Log in

Mechanism of Ductility Enhancement of the Mg-8Gd-4Y-1Nd-0.5Si Alloy by Multi-Directional Forging Process before Extrusion

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Noteworthy ductility Mg-8Gd-4Y-1Nd-0.5Si (wt.%) alloy with a strong non-basal texture was developed by 12 passes of multi-directional forging (MDF) combine with extrusion. The slip trace analysis indicated that deformation mechanism after 3 passes of MDF and extrusion were basal < a > , pyramidal < a > and pyramidal < c + a > slips. The intensity of non-basal texture increased from 5.37 to 8.03 with the MDF passes increased from 3 to 12, which means grain orientation tends to be more consistent and makes the basal < a > slips easy to pass through grain boundaries to accommodate ductility. With more basal < a > slips crossing the grain boundaries, dislocation interaction in grain interior caused stress accumulation, exceeding the critical shear stress (CRSS) of slips with low schmidt factor (SF), and multiple slips appeared. The activation of slip cross grain boundary and multiple slip improved the elongation from 14.7% to 25.6% of MDFs-extruded Mg-8Gd-4Y-1Nd-0.5Si alloy.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  1. V.M. Miller, T.D. Berman, I.J. Beyerlein, J.W. Jones, T.M. Pollock, Mater. Sci. Eng. A 675, 345 (2016). https://doi.org/10.1016/j.msea.2016.08.063

    Article  CAS  Google Scholar 

  2. W. Cheng, Y. Liu, Y. Zhang, S. Meng, S. Arthanari, H. Wang, L. Wang, Met. Mater. Int. 27, 4510 (2021). https://doi.org/10.1007/s12540-020-00703-y

    Article  CAS  Google Scholar 

  3. C. Tang, K. Wu, W. Liu, D. Feng, G. Zuo, W. Liang, Y. Yang, X. Chen, Q. Li, X. Liu, Met. Mater. Int. 27, 1438 (2021). https://doi.org/10.1007/s12540-019-00558-y

    Article  CAS  Google Scholar 

  4. B.Y. Liu, F. Liu, N. Yang, X.B. Zhai, L. Zhang, Y. Yang, B. Li, J. Li, E. Ma, J.F. Nie, Z.W. Shan, Science 365, 73 (2019). https://doi.org/10.1126/science.aaw2843

    Article  CAS  Google Scholar 

  5. Z. Wu, W.A. Curtin, Nature 526, 62 (2015). https://doi.org/10.1038/nature15364

    Article  CAS  Google Scholar 

  6. S.H. Jeong, Y.J. Kim, K.H. Kong, T.H. Cho, Y.K. Kim, H.K. Lim, W.T. Kim, D.H. Kim, Met. Mater. Int. 24, 391 (2018). https://doi.org/10.1007/s12540-018-0027-5

    Article  CAS  Google Scholar 

  7. W. Cheng, M. Wang, Z. Que, C. Xu, J. Zhang, W. Liang, B. You, S. Park, J. Central South Univ. 20, 2643 (2013). https://doi.org/10.1007/s11771-013-1779-1

    Article  CAS  Google Scholar 

  8. R. Zheng, J.-P. Du, S. Gao, H. Somekawa, S. Ogata, N. Tsuji, Acta Mater. 198, 35 (2020). https://doi.org/10.1016/j.actamat.2020.07.055

    Article  CAS  Google Scholar 

  9. J. Koike, T. Kobayashi, T. Mukai, H. Watanabe, M. Suzuki, K. Maruyama, K. Higashi, Acta Mater. 51, 2055 (2003). https://doi.org/10.1016/S1359-6454(03)00005-3

    Article  CAS  Google Scholar 

  10. C. Tang, W. Liu, Y. Chen, X. Liu, Y. Deng, J. Mater. Eng. Perform. 26, 383 (2017). https://doi.org/10.1007/s11665-016-2422-8

    Article  CAS  Google Scholar 

  11. J. Zhao, J. Fu, B. Jiang, A. Tang, H. Sheng, T. Yang, G. Huang, D. Zhang, F. Pan, Met. Mater. Int. 27, 1403 (2021). https://doi.org/10.1007/s12540-019-00528-4

    Article  CAS  Google Scholar 

  12. M.G. Jiang, C. Xu, H. Yan, G.H. Fan, T. Nakata, C.S. Lao, R.S. Chen, S. Kamado, E.H. Han, B.H. Lu, Acta Mater. 157, 53 (2018). https://doi.org/10.1016/j.actamat.2018.07.014

    Article  CAS  Google Scholar 

  13. Z.R. Zeng, Y.M. Zhu, S.W. Xu, M.Z. Bian, C.H.J. Davies, N. Birbilis, J.F. Nie, Acta Mater. 105, 479 (2016). https://doi.org/10.1016/j.actamat.2015.12.045

    Article  CAS  Google Scholar 

  14. N. **a, C. Wang, Y. Gao, Z. Hua, C. Ma, C. Du, H. Zhang, H. Zhang, M. Li, M. Zha, H. Wang, Mater. Sci. Eng. A 813, 141128 (2021). https://doi.org/10.1016/j.msea.2021.141128

    Article  CAS  Google Scholar 

  15. W.B. Hutchinson, M.R. Barnett, Scripta Mater. 63, 737 (2010). https://doi.org/10.1016/j.scriptamat.2010.05.047

    Article  CAS  Google Scholar 

  16. T. Zhang, H. Cui, X. Cui, E. Zhao, Y. Pan, R. Feng, Q. Jia, J. Zhao, J. Alloy. Compd. 784, 1130 (2019). https://doi.org/10.1016/j.jallcom.2019.01.110

    Article  CAS  Google Scholar 

  17. Q. Wang, Y. Shen, B. Jiang, A. Tang, J. Song, Z. Jiang, T. Yang, G. Huang, F. Pan, Mater. Sci. Eng. A 735, 131 (2018). https://doi.org/10.1016/j.msea.2018.08.035

    Article  CAS  Google Scholar 

  18. S. Sandlöbes, M. Friák, S. Zaefferer, A. Dick, S. Yi, D. Letzig, Z. Pei, L.F. Zhu, J. Neugebauer, D. Raabe, Acta Mater. 60, 3011 (2012). https://doi.org/10.1016/j.actamat.2012.02.006

    Article  CAS  Google Scholar 

  19. G. Chen, Y. Zhang, W. **a, D. Chen, J. Central South Univ. 22, 4112 (2015). https://doi.org/10.1007/s11771-015-2957-0

    Article  CAS  Google Scholar 

  20. C. Wang, H. Zhang, H. Wang, G. Liu, Q. Jiang, Scripta Mater. 69, 445 (2013). https://doi.org/10.1016/j.scriptamat.2013.05.026

    Article  CAS  Google Scholar 

  21. L. Guan, Y. Deng, A. Luo, X. Guo, C. Tang, Mater. Sci. Eng. A 804, 140736 (2021). https://doi.org/10.1016/j.msea.2021.140736

    Article  CAS  Google Scholar 

  22. M.G. Jiang, H. Yan, R.S. Chen, Mater. Design 87, 891 (2015). https://doi.org/10.1016/j.matdes.2015.08.052

    Article  CAS  Google Scholar 

  23. C. Cui, J. He, W. Wang, W. Chen, W. Zhang, J. Alloy. Compd. 909, 164795 (2022). https://doi.org/10.1016/j.jallcom.2022.164795

    Article  CAS  Google Scholar 

  24. M.G. Jiang, H. Yan, R.S. Chen, Mater. Sci. Eng. A 621, 204 (2015). https://doi.org/10.1016/j.msea.2014.10.075

    Article  CAS  Google Scholar 

  25. Z. Wu, R. Ahmad, B. Yin, S. Sandlobes, W.A. Curtin, Science 359, 447 (2018). https://doi.org/10.1126/science.aap8716

    Article  CAS  Google Scholar 

  26. S. Shalvi, Science 365, 29 (2019). https://doi.org/10.1126/science.aax5034

    Article  CAS  Google Scholar 

  27. H. Wu, T. Wang, R. Wu, L. Hou, J. Zhang, X. Li, M. Zhang, J. Manuf. Process. 46, 139 (2019). https://doi.org/10.1016/j.jmapro.2019.09.004

    Article  Google Scholar 

  28. P. Mehrotra, T.M. Lillo, S.R. Agnew, Ductility enhancement of a heat-treatable magnesium alloy. Scripta Mater. 55(10), 855–858 (2006). https://doi.org/10.1016/j.scriptamat.2006.08.005

    Article  CAS  Google Scholar 

  29. X. Chen, L. **ao, Y. Liu, M. Xu, T. Xu, B. Gao, Z. Hu, H. Zhou, Vacuum 179, 109568 (2020). https://doi.org/10.1016/j.vacuum.2020.109568

    Article  CAS  Google Scholar 

  30. X. **a, Q. Chen, Z. Zhao, M. Ma, X. Li, K. Zhang, J. Alloy. Compd. 623, 62 (2015). https://doi.org/10.1016/j.jallcom.2014.10.084

    Article  CAS  Google Scholar 

  31. M.G. Jiang, H. Yan, R.S. Chen, J. Alloy. Compd. 650, 399 (2015). https://doi.org/10.1016/j.jallcom.2015.07.281

    Article  CAS  Google Scholar 

  32. Z. Zhang, L. Yuan, D. Shan, B. Guo, Mater. Sci. Eng. A 827, 142036 (2021). https://doi.org/10.1016/j.msea.2021.142036

    Article  CAS  Google Scholar 

  33. J. Shen, L. Zhang, L. Hu, W. Liu, A. Fang, Z. Yao, Y. Ning, L. Ren, Y. Sun, J. Alloy. Compd. 873, 159604 (2021). https://doi.org/10.1016/j.jallcom.2021.159604

    Article  CAS  Google Scholar 

  34. Y. Zhou, Q. Luo, B. Jiang, Q. Li, F. Pan, Scripta Mater. 208, 114345 (2022). https://doi.org/10.1016/j.scriptamat.2021.114345

    Article  CAS  Google Scholar 

  35. C. He, S. Bai, B. Jiang, L. Liu, Q. Wang, M. Yuan, Z. Dong, W. He, G. Huang, D. Zhang, F. Pan, J. Mater. Res. Technol. 20, 343 (2022). https://doi.org/10.1016/j.jmrt.2022.07.034

    Article  CAS  Google Scholar 

  36. J. Xu, W. Liu, B. Jiang, H. Yang, X. Li, Y. Kang, N. Zhou, W. Zhang, K. Zheng, F. Pan, J. Market. Res. 18, 3143 (2022). https://doi.org/10.1016/j.jmrt.2022.03.165

    Article  CAS  Google Scholar 

  37. J. Zhao, B. Jiang, J. Xu, W. He, G. Huang, F. Pan, Mater. Sci. Eng. A 839, 142867 (2022). https://doi.org/10.1016/j.msea.2022.142867

    Article  CAS  Google Scholar 

  38. M. Li, Y. Huang, Y. Liu, X. Wang, Z. Wang, Mater. Sci. Eng. A 832, 142479 (2022). https://doi.org/10.1016/j.msea.2021.142479

    Article  CAS  Google Scholar 

  39. J. Xu, B. Jiang, Y. Kang, J. Zhao, W. Zhang, K. Zheng, F. Pan, J. Mater. Sci. Technol. 113, 48 (2022). https://doi.org/10.1016/j.jmst.2021.09.023

    Article  Google Scholar 

  40. C. Tang, X. Wang, W. Liu, D. Feng, K. Wu, C. Zhang, G. Miao, W. Liang, J. Li, X. Liu, Q. Li, Mater. Sci. Eng. A 759, 172 (2019). https://doi.org/10.1016/j.msea.2019.05.010

    Article  CAS  Google Scholar 

  41. C. Tang, J. Chen, X. Ma, W. Liu, H. **e, M. Li, X. Liu, Mater. Charact. 189, 111952 (2022). https://doi.org/10.1016/j.matchar.2022.111952

    Article  CAS  Google Scholar 

  42. Y. Ma, C. Liu, S. Jiang, Y. Wan, Z. Chen, Mater. Charact. 189, 111969 (2022). https://doi.org/10.1016/j.matchar.2022.111969

    Article  CAS  Google Scholar 

  43. C. He, M. Yuan, B. Jiang, S. Bai, B. Lei, X. Qian, G. Huang, D. Zhang, F. Pan, Mater. Sci. Eng. A 836, 142699 (2022). https://doi.org/10.1016/j.msea.2022.142699

    Article  CAS  Google Scholar 

  44. S. Lee, M. Kim, Y. Chae, H. Guim, J. Singh, S. Choi, J. Alloy. Compd. 897, 163238 (2022). https://doi.org/10.1016/j.jallcom.2021.163238

    Article  CAS  Google Scholar 

  45. L. Tang, C. Liu, Z. Chen, D. Ji, H. **ao, Mater. Design 50, 587 (2013). https://doi.org/10.1016/j.matdes.2013.03.054

    Article  CAS  Google Scholar 

  46. K.B. Nie, K.K. Deng, X.J. Wang, F.J. Xu, K. Wu, M.Y. Zheng, Mater. Sci. Eng. A 624, 157 (2015). https://doi.org/10.1016/j.msea.2014.11.076

    Article  CAS  Google Scholar 

  47. L.L. Chang, Y.N. Wang, X. Zhao, M. Qi, Mater. Charact. 60, 991 (2009). https://doi.org/10.1016/j.matchar.2009.04.001

    Article  CAS  Google Scholar 

  48. Y. Guo, T.B. Britton, A.J. Wilkinson, Acta Mater. 76, 1 (2014). https://doi.org/10.1016/j.actamat.2014.05.015

    Article  CAS  Google Scholar 

  49. J.L. Li, D. Wu, R.S. Chen, E.H. Han, Acta Mater. 159, 31 (2018). https://doi.org/10.1016/j.actamat.2018.08.013

    Article  CAS  Google Scholar 

  50. J. Kacher, B.P. Eftink, B. Cui, I.M. Robertson, Curr. Opin. Solid State Mater. Sci. 18, 227 (2014). https://doi.org/10.1016/j.cossms.2014.05.004

    Article  CAS  Google Scholar 

  51. B. Zhou, Y. Li, L. Wang, H. Jia, X. Zeng, Acta Mater. 227, 117662 (2022). https://doi.org/10.1016/j.actamat.2022.117662

    Article  CAS  Google Scholar 

  52. T.R. Bieler, P. Eisenlohr, C. Zhang, H.J. Phukan, M.A. Crimp, Curr. Opin. Solid State Mater. Sci. 18, 212 (2014). https://doi.org/10.1016/j.cossms.2014.05.003

    Article  CAS  Google Scholar 

  53. B. Anthony, B. Leu, I.J. Beyerlein, V.M. Miller, Acta Mater. 219, 117225 (2021). https://doi.org/10.1016/j.actamat.2021.117225

    Article  CAS  Google Scholar 

  54. Y. Takayama, J.A. Szpunar, Mater. Trans. 45, 2316 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge National key R & D projects (Project No. 2021YFB3501002) and the Equipment Advance Study Project (Project No. 41422010705). Laboratory stability support funding was obtained from the National Key Laboratory of Science and Technology on High-Strength Structural Materials, Central South University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **aobin Guo.

Ethics declarations

Conflict of Interest

All authors have read and approve this version of the article, and due care has been taken to ensure the integrity of the work. The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. This paper is our original unpublished work and it has not been submitted to any other journal for reviews.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, M., Zhang, J., Deng, Y. et al. Mechanism of Ductility Enhancement of the Mg-8Gd-4Y-1Nd-0.5Si Alloy by Multi-Directional Forging Process before Extrusion. Met. Mater. Int. 29, 1323–1333 (2023). https://doi.org/10.1007/s12540-022-01310-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-022-01310-9

Keywords

Navigation