Log in

Effect of Precipitate Characteristics on the Corrosion Behavior of a AZ80 Magnesium Alloy

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

In this study, a systematic investigation on the effect of both aging temperature (250 °C and 330 °C) and time (chosen based on aging curves) on the distribution and volume fraction of the Mg17Al12 precipitates and subsequently on the corrosion behavior of the AZ80 magnesium alloy was carried out by conducting both immersion and dynamic polarization test in a freely aerated 3.5% NaCl solution. The analysis of corrosion products using Raman spectroscopy and X-ray diffraction and investigation of corrosion morphologies using scanning electron microscopy suggested galvanic corrosion of the anodic α-Mg matrix in contact with the cathodic Mg17Al12 precipitates. The higher corrosion resistance of the alloy aged at lower temperature (250 °C) was attributed to the higher number density of the Mg17Al12 precipitates than that at higher temperature (330 °C). In the peak aged condition, the average number densities of precipitates (1/µm2) were measured to be ~ 0.74 and ~ 0.32 and average corrosion rates (mm/y) were measured to be ~ 3.0 and ~ 5.0 at the aging temperatures of 250 °C and 330 °C, respectively. At a particular aging temperature, the corrosion resistance increased to a maximum at peak-aged condition followed by a decline in the over-aged condition and further increase with prolong aging, which was correlated with the number density, size and distribution of the Mg17Al12 precipitates.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of Data and Material (Data Transparency)

The data are available from the corresponding author [SSS] upon reasonable request.

References

  1. A.A. Luo, J. Magnes. Alloys. 1, 2–22 (2013)

    Article  CAS  Google Scholar 

  2. G.L. Song, Corrosion Prevention of Magnesium Alloys, 1st edn. (Woodhead Publishing, Cambridge, 2011), pp. 3–37

    Book  Google Scholar 

  3. J.F. Nie, Metall. Mater. Trans. A 43, 3891–3939 (2012)

    Article  CAS  Google Scholar 

  4. A. Zindal, J. Jain, R. Prasad, S.S. Singh, Mater. Lett. 201, 207–210 (2017)

    Article  CAS  Google Scholar 

  5. A. Zindal, J. Jain, R. Prasad, S.S. Singh, R. Sarvesha, P. Cizek, M.R. Barnett, Mater. Charact. 136, 175–182 (2018)

    Article  CAS  Google Scholar 

  6. G. Song, A.L. Bowles, D.H. StJohn, Mat. Sci. Eng. A 366, 74–86 (2004)

    Article  Google Scholar 

  7. M. Fukuzaki, Y. Tamura, N. Kono, J. Jpn. Inst. Light Met. 55, 389–394 (2005)

    Article  CAS  Google Scholar 

  8. G. Song, A. Atrens, M. Dargusch, Corros. Sci. 41, 249–273 (1999)

    Article  CAS  Google Scholar 

  9. R.K.S. Raman, N. Birbilis, J. Efthimiadis, Corros. Eng. Sci. Tech. 39, 346–350 (2004)

    Article  CAS  Google Scholar 

  10. M.-C. Zhao, M. Liu, G. Song, A. Atrens, Corros. Sci. 50, 1939–1953 (2008)

    Article  CAS  Google Scholar 

  11. J. Li, Q. Jiang, H. Sun, Y. Li, Corros. Sci. 111, 299–301 (2016)

    Google Scholar 

  12. Y. Dai, X.-H. Chen, T. Yan, A.-T. Tang, D. Zhao, Z. Luo, C.-Q. Liu, R.-J. Cheng, F.-S. Pan, Acta Metall. Sin-Engl. 33, 225–232 (2020)

    Article  CAS  Google Scholar 

  13. H.-J. Liao, X.-F. Zhou, H.-Z. Li, M. Deng, X.-P. Lang, R.-M. Liu, T. Nonferr, Metal. Soc. 25, 3921–3927 (2005)

    Google Scholar 

  14. R. Zeng, E. Han, W. Ke, J. Mater. Sci. Technol. 23, 353–357 (2007)

    CAS  Google Scholar 

  15. Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens, ASTM Standard G1-03

  16. Standard Practice for Conventions Applicable to Electrochemical Measurements in Corrosion, ASTM standard G3-14

  17. Standard Practice for Calculation of Corrosion Rates and Related Information from Electrochemical Measurements, ASTM G102-89

  18. K. Kadali, D. Dubey, R. Sarvesha, H. Kancharla, J. Jain, K. Mondal, S.S. Singh, JOM 71, 2209–2218 (2019)

    Article  CAS  Google Scholar 

  19. M.R. Jandaghi, H. Pouraliakbar, Mat. Sci. Eng. A 679, 493–503 (2017)

    Article  CAS  Google Scholar 

  20. R. Sarvesha, W. Alam, A. Gokhale, T.S. Guruprasad, S. Bhagavath, S. Karagadde, J. Jain, S.S. Singh, Mat. Sci. Eng. A 759, 368–379 (2019)

    Article  CAS  Google Scholar 

  21. R. Sarvesha, Y.L. Chiu, I.P. Jones, S.S. Singh, J. Jain, Mat. Sci. Eng. A 775, 138973 (2020)

    Article  CAS  Google Scholar 

  22. Y. Wang, M. **a, Z. Fan, X. Zhou, G.E. Thompson, Intermetallics 18, 1683–1689 (2010)

    Article  CAS  Google Scholar 

  23. G. Zeng, J.W. **an, C.M. Gourlay, Acta Mater. 153, 364–376 (2018)

    Article  CAS  Google Scholar 

  24. K.N. Braszczynska-Malik, J. Alloy. Compd. 477, 870–876 (2009)

    Article  CAS  Google Scholar 

  25. S. Yu, Y. Gao, C. Liu, X. Han, J. Alloy. Compd. 646, 431–436 (2015)

    Article  CAS  Google Scholar 

  26. J.-H. Jun, J. Alloy. Compd. 725, 237–241 (2017)

    Article  CAS  Google Scholar 

  27. M.R. Jandaghi, H. Pouraliakbar, A. Saboori, Mater. Res. Express 6, 1065 (2019)

    Article  Google Scholar 

  28. H. Pouraliakbar, M.R. Jandaghi, S.J.M. Baygi, G. Khalaj, J. Alloy. Compd. 696, 1189–1198 (2017)

    Article  CAS  Google Scholar 

  29. L. Wang, B. Zhang, T. Shinhara, Mater. Des. 31, 857–863 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Prof. Warren Poole of the University of British Columbia for providing the as-cast AZ80 Mg alloy. The authors acknowledge the financial support from Indian Institute of Technology Kanpur to carry out this work. The authors also acknowledge the facilities at Advanced Center for Materials Science (ACMS) and Advanced Imaging Center (AIC) at Indian Institute of Technology Kanpur.

Funding

Financial support was provided by Indian Institute of Technology Kanpur.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudhanshu S. Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubey, D., Kadali, K., Kancharla, H. et al. Effect of Precipitate Characteristics on the Corrosion Behavior of a AZ80 Magnesium Alloy. Met. Mater. Int. 27, 3282–3292 (2021). https://doi.org/10.1007/s12540-020-00764-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00764-z

Keywords

Navigation