Log in

Effect of Cooling Rate on SCC Susceptibility of β-Processed Ti–6Al–4V Alloy in 0.6M NaCl Solution

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The effects of cooling rate on the stress corrosion cracking (SCC) susceptibility of β-processed Ti–6Al–4V (Ti64) alloy, including BA/S specimen with furnace cooling and BQ/S specimen with water quenching, were investigated in 0.6M NaCl solution under various applied potentials using a slow strain rate test technique. It was found that the SCC susceptibility of β-processed Ti64 alloy in aqueous NaCl solution decreased with fast cooling rate, which was particularly substantial under an anodic applied potential. The micrographic and fractographic analyses suggested that the enhancement with fast cooling rate was related to the random orientation of acicular α platelets in BQ/S specimen. Based on the experimental results, the effect of cooling rate on the SCC behavior of β-processed Ti64 alloy in aqueous NaCl solution was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M.J. Donachie, Titanium: A Technical Guide, 2nd edn. (ASM International, Ohio, 2000), p. 5

    Google Scholar 

  2. H. Chandler, Heat Treater’s Guide: Practices and Procedures for Nonferrous Alloys (ASM International, Ohio, 1996), p. 459

    Google Scholar 

  3. R. Wanhill, S. Barter, Fatigue of Beta Processed and Beta Heat-treated Titanium Alloys (Springer, Berlin, 2011), p. 1

    Google Scholar 

  4. S.L. Semiatin, V. Seetharaman, I. Weiss, JOM 39, 33 (1997)

    Article  Google Scholar 

  5. G. Welsch, R. Boyer, E.W. Collings, Materials Properties Handbook: Titanium Alloys (ASM International, Ohio, 1993), p. 484

    Google Scholar 

  6. D.H. Jeong, Y.N. Kwon, M. Goto, S.S. Kim, Int. J. Mech. Mater. Eng. 12–1, 1 (2017)

    Article  Google Scholar 

  7. D.H. Jeong, H.K. Sung, Y.N. Kwon, S.S. Kim, Met. Mater. Int. 22–4, 594 (2016)

    Article  Google Scholar 

  8. D.H. Jeong, H.K. Sung, Y.N. Kwon, S.S. Kim, Met. Mater. Int. 22–5, 747 (2016)

    Article  Google Scholar 

  9. R.P. Gangloff, B.P. Somerday, Gaseous Hydrogen Embrittlement of Materials in Energy Technologies: The Problem, its Characterisation and Effects on Particular Alloy Classe (Elsevier, Amsterdam, 2012), p. 970

    Book  Google Scholar 

  10. G.R. Yoder, L.A. Cooley, T.W. Crooker, Metall. Mater. Trans. A 9A, 1413 (1978)

    Article  Google Scholar 

  11. F.C. Campbell Jr., Manufacturing Technology for Aerospace Structural Materials (Elsevier, Amsterdam, 2011), p. 152

    Google Scholar 

  12. G.R. Yoder, L.A. Cooley, T.W. Crooker, A micromechanistic interpretation of cyclic crack-growth behavior in a beta-annealed Ti–6Al–4V alloy, No. NRL-8048 (Naval Research Lab, Washington, 1976)

    Book  Google Scholar 

  13. W.G. Seo, D.H. Jeong, H.K. Sung, Y.N. Kwon, S.S. Kim, Met. Mater. Int. 23, 648 (2017)

    Article  Google Scholar 

  14. R. Pederson, Microstructure and Phase Transformation of Ti–6Al–4V (Luleå University of technology, Luleå, 2002)

    Google Scholar 

  15. R. Pederson, The Microstructures of Ti–6A1–4V and Ti–6Al–2Sn–4Zr–6Mo and their Relationship to Processing and Properties (Luleå University of technology, Luleå, 2004)

    Google Scholar 

  16. G. Lütjering, J.C. Williams, Titanium (Springer, Berlin, 2013), p. 218

    Google Scholar 

  17. M. Peters, J. Hemptenmacher, J. Kumpfert, C. Leyens, Structure and properties of titanium and titanium alloys, in Titanium and Titanium Alloys, vol. 1, ed. by C. Leyens, M. Peters (Wiley, New Jersey, 1982), p. 1

    Google Scholar 

  18. M.J. Donachiel Jr., Heat Treating Titanium and Its Alloys. Heat Treating Progress (ASM International, Ohio, 1993), p. 49

    Google Scholar 

  19. M.J. Donachie, Titanium: A Technical Guide, 2nd edn. (ASM International, Ohio, 2000), p. 58

    Google Scholar 

  20. X.G. Zhang, J. Vereecken, Corrosion 46(2), 136 (1990)

    Article  Google Scholar 

  21. G.V. Voort, Metallographic Preparation of Titanium and its alloys (Buehler, Illinois, 2015), p. 2

    Google Scholar 

  22. D.H. Jeong, J.H. Park, S.J. Ahn, H.K. Sung, Y.N. Kwon, S.S. Kim, Met. Mater. Int. 24–1, 101 (2017)

    Google Scholar 

  23. ASTM Standard G129, Standard Practice for Slow Strain Rate Testing to Evaluate the Susceptibility of Metallic Materials to Environmentally Assisted Cracking (Annual book of ASTM standards, 03.02, West Conshohocken, 2000)

    Google Scholar 

  24. Y.S. Yoon, H.Y. Ha, T.H. Lee, S.S. Kim, Corros. Sci. 80, 28 (2014)

    Article  Google Scholar 

  25. Y.S. Yoon, H.Y. Ha, T.H. Lee, S.S. Kim, Corros. Sci. 88, 337 (2013)

    Article  Google Scholar 

  26. H.Y. Ha, W.G. Seo, J.Y. Park, T.H. Lee, S.S. Kim, Mater. Charact. 119, 200 (2016)

    Article  Google Scholar 

  27. D.H. Jeong, W.J. Jung, Y.J. Kim, M. Goto, S.S. Kim, Met. Mater. Int. 21(5), 785 (2017)

    Article  Google Scholar 

  28. D.B. Dawson, R.M. Pelloux, Metall. Mater. Trans. A 5, 723 (1974)

    Google Scholar 

  29. R.P. Wei, Fracture Mechanics: Integration of Mechanics, Materials Science and Chemistry (Cambridge University Press, Cambridge, 2010), p. 173

    Book  Google Scholar 

  30. T.F. Broderick, A.G. Jackson, H. Jones, F.H. Froes, Metall. Mater. Trans. A 16A, 1985 (1951)

    Google Scholar 

  31. M.R. Louthan, J.A. Donovan, D.E. Rawl, Corrosion 29(3), 108 (1973)

    Article  Google Scholar 

  32. E. Tal-Gutelmacher, D. Eliezer, JOM 57, 46 (2005)

    Article  Google Scholar 

  33. H.G. Nelson, D.P. Williams, J.E. Stein, Metall. Mater. Trans. A 3, 469 (1972)

    Google Scholar 

Download references

Acknowledgements

This work has been supported by the Engineering Research Center (ERC) Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2011-0030801), and the National Research Foundation of Korea (NRF) grant funded by the Korean Government (NRF-2016H1D2A2916874). This work was also supported by the Industrial Technology Innovation Program (10050561, Forming, Post-treatment and Assembly Manufacturing Technology for Nozzle Fairing of 17,700 lbs Supersonic Engine) funded by the Ministry of Trade, industry and Energy(MI, Korea), and the Fundamental Research Program of the Korea Institute of Materials Science (KIMS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangshik Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahn, S., Park, J., Jeong, D. et al. Effect of Cooling Rate on SCC Susceptibility of β-Processed Ti–6Al–4V Alloy in 0.6M NaCl Solution. Met. Mater. Int. 24, 327–336 (2018). https://doi.org/10.1007/s12540-018-0031-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-018-0031-9

Keywords

Navigation