Log in

High-temperature oxidation of AZ91-0.3%Ca-0.1%Y alloy in air

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

AZ91 magnesium alloys containing 0.3% Ca and 0.1% Y were cast, and their oxidation behavior was investigated between 425 and 600 °C in atmospheric air to examine roles of Ca and Y during oxidation. During casting, Ca formed Al2Ca particles intergranularly, and reduced the amount of Al12Mg17 particles, while most of yttrium existed as Al2Y particles inter- and intra-granularly in the alloy. The AZ91 alloy oxidized fast above 425 °C, leading to complete ignition. By contrast, AZ91-0.3Ca-0.1Y alloy oxidized very slowly up to 550 °C. Calcium, which is more active than Mg, preferentially oxidized to CaO at the surface of the MgO-rich oxide to suppress the oxidation, evaporation and diffusion of Mg during the initial oxidation stage. Such suppression was due to the quite low vapor pressure and high stoichiometry of CaO. Calcium also suppressed the formation of less oxidation-resistant Al12Mg17 through forming oxidation-resistant Al2Ca in the alloy from the initial oxidation stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. H. Cho, J. H. Nam, B. W. Lee, J. Y. Park, H. J. Shin, and I. M. Park, Korean J. Met. Mater. 53, 220 (2015).

    Article  Google Scholar 

  2. J. Luo, Y. Yan, J. Zhang, and L. Zhuang, Met. Mater. Int. 22, 637 (2016).

    Article  Google Scholar 

  3. S. Y. Park, S. K. Kim, and D. B. Lee, Korean J. Met. Mater. 54, 390 (2016).

    Article  Google Scholar 

  4. Y. H. Kim and W. J. Kim, Met. Mater. Int. 21, 374 (2015).

    Article  Google Scholar 

  5. K. Y. Ji and D. B. Lee, Korean J. Met. Mater. 54, 645 (2016).

    Article  Google Scholar 

  6. F. Czerwinski, Corros. Sci. 86, 1 (2014).

    Article  Google Scholar 

  7. F. Czerwinski, J. Metals 64, 1477 (2012).

    Google Scholar 

  8. F. Czerwinski, Acta Mater. 50, 2639 (2002).

    Article  Google Scholar 

  9. R. de Richter and S. Caillol, J. Photoch. Photobio. C 12, 1 (2011).

    Article  Google Scholar 

  10. X. Q. Zeng, Q. D. Wang, Y. Z. Lu, W. J. Ding, Y. P. Zhu, et al. Mat. Sci. Eng. A 301, 154 (2001).

    Article  Google Scholar 

  11. B. S. You, W. W. Park, and I. S. Chung, Scripta Mater. 42, 1089 (2000).

    Article  Google Scholar 

  12. B. H. Choi, B. S. You, and I. M. Park, Met. Mater. Int. 12, 63 (2006).

    Article  Google Scholar 

  13. S. H. Ha, J. K. Lee, H. H. Jo, S. B. Jung, and S. K. Kim, Rare Metals 25, 150 (2006).

    Article  Google Scholar 

  14. X. M. Wang, X. Q. Zeng, Y. Zhou, G. S. Wu, S. S. Yao, and Y. J. Lai, J. Alloy. Compd. 460, 368 (2008).

    Article  Google Scholar 

  15. A. Prasad, Z. Shi, and A. Atrens, Corros. Sci. 55, 153 (2012).

    Article  Google Scholar 

  16. J. F. Fan, C. L. Yang, G. Han, S. Fang, W. D. Yang, and B. S. Xu, J. Alloy. Compd. 509, 2137 (2011).

    Article  Google Scholar 

  17. J. F. Fan, G. C. Yang, S. L. Chen, H. **e, M. Wang, and Y. H. Zhou, J. Mater. Sci. 39, 6375 (2004).

    Article  Google Scholar 

  18. N. V. Ravi Kumar, J. J. Blandin, M. Suéry, and E. Grosjean, Scripta Mater. 49, 225 (2003).

    Article  Google Scholar 

  19. P. Y. Lin, H. Zhou, W. P. Li, W. Li, S. Z. Zhao, and J. G. Su, Corros. Sci. 51, 1128 (2010).

    Article  Google Scholar 

  20. B. S. You, Y. M. Kim, C. D. Yim, and H. S. Kim, Magnesium Technology 2014 (eds. M. Alderman, M. V. Manuel, N. T. Hort, and N. R. Neelameggham), p. 325, TMS, USA (2014).

    Google Scholar 

  21. K. Ozturk, Z. K. Liu, and A. A. Luo, Magnesium Technology 2003 (ed. H. Kaplan), p. 195, TMS, USA (2003).

    Google Scholar 

  22. D. B. Lee, Corros. Sci. 70, 243 (2013).

    Article  Google Scholar 

  23. H. W. Chang, D. Qiu, J. A. Taylor, M. A. Easton, and M. X. Zhang, J. Magnes. Alloys 1, 115 (2013).

    Article  Google Scholar 

  24. Z. Zhao, Q. Chen, Y. Wang, and D. Shu, Mat. Sci. Eng. A 515, 152 (2009).

    Article  Google Scholar 

  25. D. Qiu and M. X. Zhang, J. Alloy. Compd. 586, 39 (2014).

    Article  Google Scholar 

  26. W. J. Park and N. J. Kim, Scripta Metall. Mater. 32, 1747 (1995).

    Article  Google Scholar 

  27. B. H. Choi, B. S. You, W. W. Park, Y. B. Huang, and I. M. Park, Met. Mater. Int. 9, 395 (2003).

    Article  Google Scholar 

  28. B. H. Choi, B. S. You, and I. M. Park, Met. Mater. Int. 12, 63 (2006).

    Article  Google Scholar 

  29. P. Kofstad, Nonstoichiometry, Diffusion and Electrical Conductivity in Binary Metal Oxides, p. 121, Wiley-Interscience, USA (1972).

    Google Scholar 

  30. W. J. M. van der Kemp, J. G. Blok, P. R. van der Linde, H. A. J. Oonk, A. Schuijff, and M. L. Verdonk, Calphad 18, 255 (1994).

    Article  Google Scholar 

  31. D. A. Jones, Principles and Prevention of Corrosion, 2nd ed. p. 412, Prentice Hall, USA (1996).

    Google Scholar 

  32. V. Fournier, P. Marcus, and I. Olefjord, Surf. Interface Anal. 34, 494 (2002).

    Article  Google Scholar 

  33. I. Barin, Thermochemical Data of Pure Substances, VCH, Germany (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bong Sun You.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, D.B., Abro, M.A. & You, B.S. High-temperature oxidation of AZ91-0.3%Ca-0.1%Y alloy in air. Met. Mater. Int. 23, 720–725 (2017). https://doi.org/10.1007/s12540-017-6745-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-017-6745-2

Keywords

Navigation