Log in

Hydrogen gas sensing of Co3O4-Decorated WO3 nanowires

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Co3O4 nanoparticle-decorated WO3 nanowires were synthesized by the thermal oxidation of powders followed by a solvothermal process for Co3O4 decoration. The Co3O4 nanoparticle-decorated WO3 nanowire sensor exhibited a stronger and faster electrical response to H2 gas at 300 °C than the pristine WO3 nanowire counterpart. The former showed faster response and recovery than the latter. The pristine and Co3O4-decorated WO3 nanowire sensors showed the strongest response to H2 gas at 225 and 200 °C, respectively. The Co3O4-decorated WO3 nanowire sensor showed selectivity for H2 gas over other reducing gases. The enhanced sensing performance of the Co3O4-decorated WO3 nanowire sensor was explained by a combination of mechanisms: modulation of the depletion layer width forming at the Co3O4-WO3 interface, modulation of the potential barrier height forming at the interface, high catalytic activity of Co3O4 for the oxidation of H2, active adsorption of oxygen by the Co3O4 nanoparticle surface, and creation of more active adsorption sites by Co3O4 nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Tamaki, T. Maekawa, N. Miura, and N. Yamazoe, Sensor. Actuat. B-Chem. 9, 197 (1992).

    Article  Google Scholar 

  2. T. Hübert, L. Boon-Brett, G. Black, and U. Banach, Sensor. Actuat. B-Chem. 157, 329 (2011).

    Article  Google Scholar 

  3. L. Fields, J. Zheng, Y. Cheng, and P. **ong, Appl. Phys. Lett. 88, 232 (2006).

    Article  Google Scholar 

  4. K. Skucha, Z. Fan, K. Jeon, A. Javey, and B. Boser, Sensor. Actuat. B-Chem. 145, 232 (2010).

    Article  Google Scholar 

  5. M. Ramanathan, G. Skudlarek, H. H. Wang, and S. B. Darling, Nanotechnology 21, 125501 (2010).

    Article  Google Scholar 

  6. K. J. Liekus, I. A. Zlochower, K. L. Cashdollar, S. M. Djordjevic, and C. A. Loehr, J. Loss Prevent. Proc. 13, 377 (2000).

    Article  Google Scholar 

  7. S. Park, S. An, H. Ko, C. **, and C. Lee, ACS Appl. Mater. Interfaces 4, 3650 (2012).

    Article  Google Scholar 

  8. Y. J. Kwon, H. G. Na, S. S. Kim, P. Wu, and H. W. Kim, Met. Mater. Int. 21, 956 (2015).

    Article  Google Scholar 

  9. J. H. Yoon and J. S. Kim, Met. Mater. Int. 16, 773 (2010).

    Article  Google Scholar 

  10. J. M. Lim, K. C. Shin, H. W. Kim, and C. Lee, Thin Solid Films 475, 256 (2005).

    Article  Google Scholar 

  11. M. Law, H. Kind, B. Messer, F. Kim, and P. Yang, Angew. Chem. Int. Edit. 41, 2511 (2002).

    Article  Google Scholar 

  12. W. Zheng, X. Lu, W. Wang, Z. Li, H. Zhang, Y. Wang, Z. Wang, and C. Wang, Sensor. Actuat. B-Chem. 142, 61 (2009).

    Article  Google Scholar 

  13. S. Park, S. An, Y. Mun, and C. Lee, ACS Appl. Mater. Interfaces 5, 4285 (2013).

    Article  Google Scholar 

  14. A. S. Zoolfakar, M. Z. Ahmad, R. A. Rani, J. Z. Ou, S. Balendhran, S. Zhuiykov, K. Latham, W. Wlodarski, and K. Kalantar-zadeh, Sensor. Actuat. B-Chem. 185, 620 (2013).

    Article  Google Scholar 

  15. K. Pirkanniemi and M. Sillanpää, Chemosphere 48, 1047 (2002).

    Article  Google Scholar 

  16. M. M. Bettahar, G. Costentin, L. Savary, and J. C. Lavalley, Appl. Catal. A-Gen. 145, 1 (1996).

    Article  Google Scholar 

  17. H. R. Kim, K. I. Choi, K. M. Kim, I. D. Kim, G. Cao, and J. H. Lee, Chem. Commun. 46, 5061 (2010).

    Article  Google Scholar 

  18. H. T. Sun, C. Cantalini, L. Lozzi, M. Passacantando, S. Santucci, and M. Pelino, Thin Solid Films 287, 258 (1996).

    Article  Google Scholar 

  19. B. Cao, J. Chen, X. Tang, and W. Zhou, J. Mater. Chem. 19, 2323 (2009).

    Article  Google Scholar 

  20. A. Ponzoni, E. Comini, G. Sberveglieri, J. Zhou, S. Z. Deng, N. S. Xu, Y. Ding, and Z. L. Wang, Appl. Phys. Lett. 88, 203101 (2006).

    Article  Google Scholar 

  21. O. Merdrignac-Conanec and P. T. Moseley, J. Mater. Chem. 12, 1779 (2002).

    Article  Google Scholar 

  22. J. H. Pan, S.Y.Chail, C. Lee, S. E. Park, and W. I. Lee, J. Phys. Chem. C. 111, 5582 (2007).

    Article  Google Scholar 

  23. I. Jimenez, M. A. Centeno, R. Scotti, F. Morazzoni, J. Arbiol, A. Cornet, and J. R. Morante, J. Mater. Chem. 14, 2412 (2004).

    Article  Google Scholar 

  24. C. S. Rout, A. Govindaraj, and C. N. R. Rao, J. Mater. Chem. 16, 3936 (2006).

    Article  Google Scholar 

  25. C. C. Li, Z. F. Du, L. M. Li, H. C. Yu, Q. Wan, and T. H. Wang, Appl. Phys. Lett. 91, 032101 (2007).

    Article  Google Scholar 

  26. M. S. Hwang, and C. Lee, Mater. Sci. Eng. B-Adv. 75, 24 (2000).

    Article  Google Scholar 

  27. J. F. Chang, H. H. Kuo, I. C. Leu, and M. H. Hon, Sens. Actuators B 84, 258 (2002).

    Article  Google Scholar 

  28. N. Barsan and U. Weimar, J. Electroceram. 7, 143 (2001).

    Article  Google Scholar 

  29. A. R. Raju and C. N. R. Rao, Sensor. Actuat. B-Chem. 3, 305 (1991).

    Article  Google Scholar 

  30. D. Patil, L. Patil, and P. Patil, Sensor. Actuat. B-Chem. 126, 368 (2007).

    Article  Google Scholar 

  31. S. Park, H. Ko, S. Kim, and C. Lee, ACS Appl. Mater. Interfaces 6, 9595 (2014).

    Article  Google Scholar 

  32. K. Jain, R. P. Pant, and S. T. Lakshmikumar, Sensor. Actuat. B-Chem. 113, 823 (2006).

    Article  Google Scholar 

  33. E. Salje, J. Appl. Crystallogr. 7, 615 (1974).

    Article  Google Scholar 

  34. D. Miller, S. Akbar, and P. Morris, Sensor. Actuat. B-Chem. 204, 250 (2014).

    Article  Google Scholar 

  35. A. O. Gulino, P. Dapporto, P. Rossi, and I. Fragalà, Chem. Mater. 15, 3748 (2003).

    Article  Google Scholar 

  36. L. **ng, S. Yuan, Z. Chen, Y. Chen, and X. Xue, Nanotechnology 22, 1 (2011).

    Google Scholar 

  37. X. **e, Y. Li, Z. Q. Liu, M. Haruta, and W. Shen, Nature 458, 746 (2009).

    Article  Google Scholar 

  38. A. K. Chakraborty, Z. Qi, S. Y.Chail, C. Lee, S. Y. Park, D. J. Jang, and W. I. Lee, Appl. Catal. B-Environ. 93, 368 (2010).

    Article  Google Scholar 

  39. M.-C. Shin, J. H. Kim, J.-S. Cha, B. K. Shin, and H. S. Lee, Korean J. Met. Mater. 51, 57 (2013).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chongmu Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, S., Sun, GJ., Kheel, H. et al. Hydrogen gas sensing of Co3O4-Decorated WO3 nanowires. Met. Mater. Int. 22, 156–162 (2016). https://doi.org/10.1007/s12540-015-5376-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-015-5376-8

Keywords

Navigation