Log in

Quantification of micro-cracks on the bending surface of roll formed products using the GTN model

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

With the rising interest in lightweight construction, the usage of high strength steel has increased remarkably during the last years. Unfortunately, there is manufacturing problem: high strength steel has a higher occurrence rate of cracks than mild steel. The Gurson-Tvergaard-Needleman (GTN) model is used to precisely predict the occurrence of cracks in roll forming. The flow stress and the GTN material parameters are identified using a load-displacement curve obtained from tensile test. In detail, the material parameters that have to be determined were selected and based on this 3-level orthogonal array is made. The coefficients of the objective function are derived using the response surface method with the orthogonal array based on the simulation results. The material parameters are obtained by minimizing the objective function and determined by comparing the simulation and test results. The reliability of the material parameters determined by the tensile test increased through cross-validation using the bending test. The roll forming simulation with the determined parameters is fulfilled, and the experiments are performed to determine the occurrence of micro-cracks according to bending angles. Micro-cracks are quantified by comparing the void volume fraction (f) from the GTN model, and the micro-cracks on the surface are measured using a scanning-electron-microscope.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. X. Li, Z. Q. Lin, A. Q. Jiang, and G. L. Chen, Mater. Design 24, 177 (2003).

    Article  Google Scholar 

  2. K. Sweeney and U. Grunewald, J. Mater. Process Technol. 132, 9 (2003).

    Article  Google Scholar 

  3. M. Lindgren, J. Mater. Process Techol. 191, 44 (2007).

    Article  Google Scholar 

  4. M. Lindgren, J. Mater Process Technol. 186, 77 (2007).

    Article  Google Scholar 

  5. P. Groche, P. Beiter, and M. Henkelmann, Prod. Eng. Res. Devel. 2, 401 (2008).

    Article  Google Scholar 

  6. H. Ona, J. Mater. Process Technol. 153, 247 (2004).

    Article  Google Scholar 

  7. M. Merklein and M. Geiger, J. Mater. Process Technol. 125, 532 (2002).

    Article  Google Scholar 

  8. A. L. Gurson, J. Eng. Mater. Technol. 99, 2 (1977).

    Article  Google Scholar 

  9. V. Tvergaard, Int. J. Fract. 17, 389 (1981).

    Article  Google Scholar 

  10. V. Tvergaard, Int. J. Fract. 18, 237 (1982).

    Google Scholar 

  11. V. Tvergaard and A. Needleman, Acta Metall. 32, 157 (1984).

    Article  Google Scholar 

  12. L. **a, C.F. Shih, and J.W. Hutchinson, J. Mech. Phys. Solids 43, 389 (1995).

    Article  Google Scholar 

  13. W. Schmitt, D.Z. Sun, and J.G. Blauel, Nucl. Eng. Des. 174, 237 (1997).

    Article  Google Scholar 

  14. T. S. Srivatsan, M. Al-Hajri, C. Smith, and M. Petraroli, Mater. Sci. Eng. a-Struct. 346, 91 (2003).

    Article  Google Scholar 

  15. E.-Y. Kim, H. S. Yang, S. H. Han, J. H. Kwak, and S.-H. Choi, Met. Mater. Int. 18, 573 (2012).

    Article  Google Scholar 

  16. M. He, F.G. Li, and Z.G. Wang, Chinese J. Aeronaut. 24, 378 (2011).

    Article  Google Scholar 

  17. M. Springmann and M. Kuna, Comp. Mater. Sci. 33, 500 (2005).

    Article  Google Scholar 

  18. J. Wang, N. Kim, and H. Lee, Met. Mater. Int. 18, 303 (2012).

    Article  Google Scholar 

  19. I.-K. Kim, J.-Y. Song, O.-K. Hwan, and S. I. Hong, Korean J. Met. Mater. 50, 345 (2012).

    Article  Google Scholar 

  20. J. C. Simo and T. J. R. Hughes, Computational Inelasticity, p.120, Springer, New York (1998).

    Google Scholar 

  21. C. C. Chu and A. Needleman, J. Eng. Mater. Technol. 102, 249 (1980).

    Article  Google Scholar 

  22. N. Aravas, Int. J. Numer Meth. Eng. 24, 1395 (1987).

    Article  Google Scholar 

  23. J. E. Dennis and R. B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations, p.86, Prentice-Hall, Englewood Cliffs, N.J. (1983).

    Google Scholar 

  24. J. C. Simo and T. A. Laursen, Comput. Struct. 42, 97 (1992).

    Article  Google Scholar 

  25. S. Hong, S. Lee, and N. Kim, J. Mater. Process Tech. 113, 774 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naksoo Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cha, Wg., Kim, N. Quantification of micro-cracks on the bending surface of roll formed products using the GTN model. Met. Mater. Int. 20, 841–850 (2014). https://doi.org/10.1007/s12540-014-5008-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-014-5008-8

Keywords

Navigation