Log in

Influence of electrochemical properties on electrochemical migration of SnPb and SnBi solders

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

SnPb solders have been widely used in many fields because of their excellent solderability. To respond to environmental and health concerns regarding SnPb solders, it is necessary to develop lead-free solder for electronic assembly. In this paper, the resistance to the electrochemical migration of eutectic SnPb and SnBi solder alloys was evaluated and analyzed to detect the difference in the electrochemical migration behavior between these solders by their electrochemical properties. Pb and Bi additions to a Sn-base solder improved the resistance to electrochemical migration because of enhanced polarization properties. The resistance was closely related to the cathodic deposition efficiency and the anodic dissolution behavior. In addition, the composition of the dendrite formed by the electrochemical migration was related to the standard electrode potential of the alloying element.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. P. Chung, Y. Y. Shin, and S. S. Lim, Pb-free Micro-Soldering, Samsung Books, Seoul, Korea (2001).

    Google Scholar 

  2. C. S. Kang and J. P. Chung, Micro Joining, Samsung Books, Seoul, Korea (2002).

    Google Scholar 

  3. J. Glazer, JEM 23. 8. 673 (1994).

  4. S. Ganesan and M. Pecht, Lead-free Electronics, p. 50, CALCE, University of Maryland, College Park, Maryland (2004).

    Google Scholar 

  5. C. M. Chen and C. C. Huang, J. Alloy. Compd. 461, 235 (2008).

    Article  CAS  Google Scholar 

  6. F. Hua, Z. Mei, and J. Glazer, Proceedings of the 48th Electronic Components and Technology Conference, p. 277 (1998).

  7. E. C. C. Yeh, W. J. Choi, K. N. Tu, P. Elenius, and H. Balkan, Appl. Phys. Lett. 80, 580 (2002).

    Article  CAS  ADS  Google Scholar 

  8. Y. C. Hu, Y. H. Lin, C. R. Kao, and K. N. Tu, J. Mater. Res. 18, 2544. (2003).

    Article  ADS  Google Scholar 

  9. J. Y. Choi, S.S. Lee, Y.C. Joo, Jpn. J. Appl. Phys. 41, 7487 (2002).

    Article  CAS  ADS  Google Scholar 

  10. G. A. Rinne, Microelectron. Reliab. 43, 1975 (2003).

    Article  CAS  Google Scholar 

  11. C. M. Chen and S. W. Chen, J. Appl. Phys. 90, 1208 (2001).

    Article  CAS  ADS  Google Scholar 

  12. J. H. Lee, G. T. Lim, S. T. Yang, M. S. Suh, Q. H. Chung, K. Y. Byun, Y. B. Park, J. Kor. Inst. Met. & Mater. 46, 310 (2008).

    CAS  Google Scholar 

  13. Q. L. Yang and J. K. Shang, J. Electron. Mater. 34, 1363 (2005).

    Article  CAS  ADS  Google Scholar 

  14. IPC-TR-476A, Electrochemical Migration: Electrically Induced Failures in Printed Wiring Assemblies.

  15. IPC-9201, Surface Insulation Resistance Handbook.

  16. IPC-TM-650 2.6.14.1 Electrochemical Migration Resistance Test.

  17. T. Takemoto, R. M. Latanision, T. W. Eagar, and A. Matsunawa, Corros. Sci. 38, 1415 (1997).

    Article  Google Scholar 

  18. W. J. Ready and L. J. Turbini, J. Eletron. Mater. 31, 1208 (2002).

    Article  CAS  ADS  Google Scholar 

  19. S. B. Lee, Y. R. Yoo, J. Y. Jung, Y. B. Park, Y. S. Kim, and Y. C. Joo, IEEE Electronic Components and Technology Conference, p. 621 (2006).

  20. Y. R. Yoo and Y. S. Kim, Met. Mater. Int. 13, 129 (2007).

    Article  CAS  Google Scholar 

  21. S. B. Lee, Y. R. Yoo, J. Y. Jung, Y. B. Park, Y. S. Kim, and Y. C. Joo, Thin Solid Films 504, 294 (2006).

    Article  CAS  ADS  Google Scholar 

  22. G. Harsanyi and G. Inzelt, Microelectron. Reliab. 41, 229 (2001).

    Article  Google Scholar 

  23. P. Zhao and M. Pecht, Microelectron. Reliab. 43, 775 (2003).

    Article  CAS  Google Scholar 

  24. H. Tanaka, ESPEC Technology Report 14, 1 (2002).

    Google Scholar 

  25. A. J. Bard, R. Parsons, and J. Jordan, Standard Potentials in Aqueous Solution, IUPCA, New York and Basel. Marcel Dekker Inc. (1985).

    Google Scholar 

  26. Y. R. Yoo, H. S. Nam, J. Y. Jung, S. B. Lee, Y. B. Park, Y. C. Joo, and Y. S. Kim, Corros. Sci. & Tech. 6, 50 (2007).

    Google Scholar 

  27. Y. R. Yoo and Y. S. Kim, Met. Mater. Int. 16, 613 (2010).

    Article  CAS  Google Scholar 

  28. J. H. Lee, G. T. Lim, S. T. Yang, M. S. Suh, Q. H. Chung, K. Y. Byun, and Y. B. Park, J. Kor. Inst. Met. & Mater. 46, 310 (2008).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. S. Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoo, Y.R., Kim, Y.S. Influence of electrochemical properties on electrochemical migration of SnPb and SnBi solders. Met. Mater. Int. 16, 739–745 (2010). https://doi.org/10.1007/s12540-010-1007-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-010-1007-6

Keywords

Navigation