Log in

Assessment of austenite static recrystallization and grain size evolution during multipass hot rolling of a niobium-microalloyed steel

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Double-deformation isothermal tests and multipass continuous-cooling hot torsion tests were used to study the evolution of austenite microstructures during isothermal and non-isothermal hot deformation of an Nb microalloyed steel. These tests, coupled with microstructural characterization, have verified that the no-recrystallization temperature (T nr ) corresponds roughly to the temperature where recrystallization starts to be incomplete during rolling. An accurate method to estimate the recrystallized fraction during hot rolling based on stress-strain data, and which does not require metallographic studies, is proposed. The results of this method have been successfully compared to metallographic measurements, the values of non-isothermal fractional softening and the accumulated stress measured in the plots of mean flow stress (MFS) versus the inverse of temperature. A remarkable austenite grain refinement occurs in the first hot rolling passes after reheating. The correlation of isothermal and continuous cooling tests is better understood if the effect of grain size on recrystallization and precipitation is taken into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. M. Sellars, Proc. Int. Conf. on Hot Working and Forming Processes (eds. C.M. Sellars and C.J. Davies), p. 3, The Metal Society of London (1980).

  2. F. H. Samuel, S. Yue, J. J. Jonas, and B. A. Zbinden, ISIJ Int. 29, 878 (1989).

    Article  CAS  Google Scholar 

  3. S. F. Medina, A. Quispe, P. Valles, and J. L. Baños, ISIJ Int. 39, 913 (1999).

    Article  CAS  Google Scholar 

  4. S. F. Medina, A. Quispe, and M. Gomez, Mater. Sci. Tech-Lond. 17, 536 (2001).

    CAS  Google Scholar 

  5. S. F. Medina, Mater. Sci. Tech-Lond. 14, 217 (1998).

    CAS  Google Scholar 

  6. B. Engl and K. Kaup, Proceedings of the International Conference on Thermomechanical Processing of Microalloyed Austenite (eds. A. J. DeArdo, G. A. Ratz and P. J. Wray), p. 467, TMS AIME, Pittsburgh, PA (1982).

    Google Scholar 

  7. M. Umemoto, A. Hiramatsu, A. Moriya, T. Watanabe, S. Nanba, N. Nakajima and G. Anan, Y. Higo, ISIJ Int. 32, 306 (1992).

    Article  CAS  Google Scholar 

  8. P. Korczak, H. Dyja and J. W. Pilarczyk, Met. Mater. Int. 4, 707 (1998).

    CAS  Google Scholar 

  9. M. Jahazi, Met. Mater. Int. 4, 818 (1998).

    CAS  Google Scholar 

  10. J. S. Perttula and L. P. Karjalainen, Mater. Sci. Tech-Lond. 14, 626 (1998).

    CAS  Google Scholar 

  11. A. I. Fernández, B. Lopez, and J. M. Rodriguez-Ibabe, Scripta Mater. 40, 543 (1999).

    Article  Google Scholar 

  12. W. J. Liu and M. G. Akben, Can. Metall. Q. 26, 145 (1987).

    CAS  Google Scholar 

  13. A. Streisselberger, R. Kaspar, and O. Pawelski, Metall. Trans. A 16, 67 (1985).

    Google Scholar 

  14. E. J. Giordani, A. M. Jorge, Jr., and O. Balancin, Scripta mater 55, 743 (2006).

    Article  CAS  Google Scholar 

  15. N. D. Ryan and H. J. McQueen, J. Mater. Process. Tech. 36, 103 (1993).

    Article  Google Scholar 

  16. D. Y. Kim and J. J. Park, Met. Mater. Int. 4, 760 (1998).

    CAS  Google Scholar 

  17. Y. Lee, S. Choi, S. J. Yoo, and W. Y. Choo, Met. Mater. Int. 6, 267 (2000).

    CAS  Google Scholar 

  18. Y. Lee, S. I. Kim, S. Choi, B. L. Jang, W. Y. Choo, Met. Mater. Int. 7, 519 (2001).

    Article  CAS  Google Scholar 

  19. S. W. Choi and Y. S. Lee, Met. Mater. Int. 8, 15 (2002).

    Article  CAS  Google Scholar 

  20. J. J. Jonas and E. I. Poliak, Mater. Sci. Forum 500–501, 15 (2005).

    Article  Google Scholar 

  21. S. Serajzadeh, Mater. Sci. Eng. A 448, 146 (2007).

    Article  CAS  Google Scholar 

  22. L. P. Karjalainen, T. M. Maccagno, and J. J. Jonas, ISIJ Int. 35, 1523 (1995).

    Article  CAS  Google Scholar 

  23. E. T. Turkdogan, Iron Steelmaker 16, 61 (1989).

    CAS  Google Scholar 

  24. H. L. Andrade, M. G. Akben, and J. J. Jonas, Metall. Trans. A 14, 1967 (1983).

    Article  Google Scholar 

  25. S. F. Medina, A. Quispe, and M. Gomez, Mater. Sci. Tech-Lond. 19, 99 (2003).

    Article  CAS  Google Scholar 

  26. K. J. Lee, Scripta mater. 40, 837 (1999).

    Article  CAS  Google Scholar 

  27. H. S. Zurob, Y. Brechet and G. Purdy, Acta mater. 49, 4183 (2001).

    Article  CAS  Google Scholar 

  28. A. Faessel, Rev. Métall. Cah. Inf. Tech. 33, 875 (1976).

    Google Scholar 

  29. M. Gomez, O. Hernanz, S. F. Medina, and P. Tarin, Steel Res. 73, 446 (2002).

    CAS  Google Scholar 

  30. M. I. Vega, S. F. Medina, A. Quispe, M. Gomez, and P. P. Gomez, Mater. Sci. Eng. A 423, 253 (2006).

    Article  CAS  Google Scholar 

  31. S. F. Medina, M. Gomez, E. Rodriguez, and L. Lancel, ISIJ Int. 48, 1263 (2008).

    Article  CAS  Google Scholar 

  32. M. Arribas, B. Lopez, and J. M. Rodriguez-Ibabe, Mater. Sci. Eng. A 485, 383 (2008).

    Article  CAS  Google Scholar 

  33. R. Abad, A. I. Fernández, B. Lopez, and J. M. Rodriguez- Ibabe, ISIJ Int. 41, 1373 (2001).

    Article  CAS  Google Scholar 

  34. E. J. Palmiere, C. I. Garcia, and A. J. DeArdo, Metall. Mater. Trans. A 27, 951 (1996).

    Article  Google Scholar 

  35. M. Gomez, S. F. Medina, and P. Valles, ISIJ Int. 45, 1711 (2005).

    Article  CAS  Google Scholar 

  36. N. Radovic and D. Drobnjak, ISIJ Int. 39, 575 (1999).

    Article  CAS  Google Scholar 

  37. C. Devadas, I. V. Samarasekera, and E. B. Hawbolt, Metall. Trans. A 22, 335 (1991).

    Article  Google Scholar 

  38. K. Hulka, Niobium Information, CBMM 17/98 (1998).

  39. S. F. Medina, M. I. Vega, M. Gomez, and P.P. Gomez, ISIJ Int. 45, 1307 (2005).

    Article  CAS  Google Scholar 

  40. K. B. Kang, O. Kwon, W. B. Lee, and C. G. Park, Scripta mater. 36, 1303 (1997).

    Article  CAS  Google Scholar 

  41. H. S. Zurob, C. R. Hutchinson, Y. Brechet, and G. Purdy, Acta mater. 50, 3075 (2002).

    Article  CAS  Google Scholar 

  42. B. Dutta and C. M. Sellars, Mater. Sci. Tech-Lond. 3, 197 (1987).

    CAS  Google Scholar 

  43. D. Q. Bai, S. Yue, W. P. Sun, and J. J. Jonas, Metall. Trans A 24, 2151 (1993).

    Article  Google Scholar 

  44. M. Kazeminezhad, Mater. Sci. Eng. A 486, 202 (2008).

    Article  CAS  Google Scholar 

  45. A. Quispe, S. F. Medina, M. Gomez, and J. I. Chaves, Mater. Sci. Eng A 447, 11 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Gómez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gómez, M., Rancel, L. & Medina, S.F. Assessment of austenite static recrystallization and grain size evolution during multipass hot rolling of a niobium-microalloyed steel. Met. Mater. Int. 15, 689–699 (2009). https://doi.org/10.1007/s12540-009-0689-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-009-0689-0

Keywords

Navigation