Log in

The function of bone morphogenetic proteins in the human ovary

  • Review Article
  • Published:
Reproductive Medicine and Biology

Abstract

The gonadotropins, follicle-stimulating hormone (FSH), and luteinizing hormone (LH), are of particular importance in ovarian physiology. However, FSH receptors and LH receptors are not expressed until the secondary follicle stage, indicating that initiation of follicular growth is independent of the gonadotropins. Among many intra-ovarian growth factors, many studies have shown that bone morphogenetic proteins (BMPs) play pivotal roles in regulating the early phases of follicular growth. The BMP system induces the gonadotropin system by modulating gonadotropin receptors in early-stage follicles. Interestingly, the BMP system also prevents precocious maturation of the follicle by suppressing luteinization. Signals provoked by the preovulatory LH surge eliminate BMPs, enabling luteinization to progress. Thus, the BMP system and the gonadotropin system seem to cooperate in regulating follicular development, maturation, and luteinization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Urist MR. Bone: formation by auto-induction. Science. 1965;150:893–9.

    Article  PubMed  CAS  Google Scholar 

  2. Kawabata M, Imamura T, Miyazono K. Signal transduction by bone morphogenetic proteins. Cytokine Growth Factor Rev. 1998;9:49–61.

    Article  PubMed  CAS  Google Scholar 

  3. Hogan BL. Bone morphogenetic proteins: multifunctional regulators of vertebrate development. Genes Dev. 1996;10:1580–94.

    Article  PubMed  CAS  Google Scholar 

  4. Shimasaki S, Zachow RJ, Li D, Kim H, Iemura S, Ueno N, et al. A functional bone morphogenetic protein system in the ovary. Proc Natl Acad Sci USA. 1999;96:7282–7.

    Article  PubMed  CAS  Google Scholar 

  5. Dong J, Albertini DF, Nishimori K, Kumar TR, Lu N, Matzuk MM. Growth differentiation factor-9 is required during early ovarian folliculogenesis. Nature. 1996;383:531–5.

    Article  PubMed  CAS  Google Scholar 

  6. Shimasaki S, Moore RK, Otsuka F, Erickson GF. The bone morphogenetic protein system in mammalian reproduction. Endocr Rev. 2004;25:72–101.

    Article  PubMed  CAS  Google Scholar 

  7. Otsuka F. Multiple endocrine regulation by bone morphogenetic protein system. Endocr J. 2010;57:3–14.

    Google Scholar 

  8. Juengel JL, McNatty KP. The role of proteins of the transforming growth factor-beta superfamily in the intraovarian regulation of follicular development. Hum Reprod Update. 2005;11:143–60.

    PubMed  CAS  Google Scholar 

  9. Dube JL, Wang P, Elvin J, Lyons KM, Celeste AJ, Matzuk MM. The bone morphogenetic protein 15 gene is X-linked and expressed in oocytes. Mol Endocrinol. 1998;12:1809–17.

    Article  PubMed  CAS  Google Scholar 

  10. Aaltonen J, Laitinen MP, Vuojolainen K, Jaatinen R, Horelli-Kuitunen N, Seppa L, et al. Human growth differentiation factor 9 (GDF-9) and its novel homolog GDF-9B are expressed in oocytes during early folliculogenesis. J Clin Endocrinol Metab. 1999;84:2744–50.

    Article  PubMed  CAS  Google Scholar 

  11. Shi J, Yoshino O, Osuga Y, Koga K, Hirota Y, Hirata T, et al. Bone morphogenetic protein-6 stimulates gene expression of follicle-stimulating hormone receptor, inhibin/activin beta subunits, and anti-Mullerian hormone in human granulosa cells. Fertil Steril. 2009;92:1794–8.

    Article  PubMed  Google Scholar 

  12. Shi J, Yoshino O, Osuga Y, Nishii O, Yano T, Taketani Y. Bone morphogenetic protein 7 (BMP-7) increases the expression of follicle-stimulating hormone (FSH) receptor in human granulosa cells. Fertil Steril. 2010;93:1273–9.

    Google Scholar 

  13. Shi J, Yoshino O, Osuga Y, Koga K, Hirota Y, Nose E, et al. Bone Morphogenetic protein-2 (BMP-2) increases gene expression of FSH receptor and aromatase and decreases gene expression of LH receptor and StAR in human granulosa cells. Am J Reprod Immunol. 2010.

  14. Chang H, Brown CW, Matzuk MM. Genetic analysis of the mammalian transforming growth factor-beta superfamily. Endocr Rev. 2002;23:787–823.

    Article  PubMed  CAS  Google Scholar 

  15. Massague J. The transforming growth factor-beta family. Annu Rev Cell Biol. 1990;6:597–641.

    Article  PubMed  CAS  Google Scholar 

  16. Di Pasquale E, Rossetti R, Marozzi A, Bodega B, Borgato S, Cavallo L, et al. Identification of new variants of human BMP15 gene in a large cohort of women with premature ovarian failure. J Clin Endocrinol Metab. 2006;91:1976–9.

    Article  PubMed  CAS  Google Scholar 

  17. Dixit H, Rao LK, Padmalatha VV, Kanakavalli M, Deenadayal M, Gupta N, et al. Missense mutations in the BMP15 gene are associated with ovarian failure. Hum Genet. 2006;119:408–15.

    Article  PubMed  CAS  Google Scholar 

  18. Hashimoto O, Moore RK, Shimasaki S. Posttranslational processing of mouse and human BMP-15: potential implication in the determination of ovulation quota. Proc Natl Acad Sci USA. 2005;102:5426–31.

    Article  PubMed  CAS  Google Scholar 

  19. Liao WX, Moore RK, Shimasaki S. Functional and molecular characterization of naturally occurring mutations in the oocyte-secreted factors bone morphogenetic protein-15 and growth and differentiation factor-9. J Biol Chem. 2004;279:17391–6.

    Article  PubMed  CAS  Google Scholar 

  20. Miyazono K. TGF-beta signaling by Smad proteins. Cytokine Growth Factor Rev. 2000;11:15–22.

    Article  PubMed  CAS  Google Scholar 

  21. Miyazawa K, Shinozaki M, Hara T, Furuya T, Miyazono K. Two major Smad pathways in TGF-beta superfamily signalling. Genes Cells. 2002;7:1191–204.

    Article  PubMed  CAS  Google Scholar 

  22. Lawson KA, Dunn NR, Roelen BA, Zeinstra LM, Davis AM, Wright CV, et al. Bmp4 is required for the generation of primordial germ cells in the mouse embryo. Genes Dev. 1999;13:424–36.

    Article  PubMed  CAS  Google Scholar 

  23. Ying Y, Liu XM, Marble A, Lawson KA, Zhao GQ. Requirement of Bmp8b for the generation of primordial germ cells in the mouse. Mol Endocrinol. 2000;14:1053–63.

    Article  PubMed  CAS  Google Scholar 

  24. Ying Y, Zhao GQ. Cooperation of endoderm-derived BMP2 and extraembryonic ectoderm-derived BMP4 in primordial germ cell generation in the mouse. Dev Biol. 2001;232:484–92.

    Article  PubMed  CAS  Google Scholar 

  25. Ross A, Munger S, Capel B. Bmp7 regulates germ cell proliferation in mouse fetal gonads. Sex Dev. 2007;1:127–37.

    Article  PubMed  CAS  Google Scholar 

  26. de Sousa Lopes SM, Roelen BA, Monteiro RM, Emmens R, Lin HY, Li E, et al. BMP signaling mediated by ALK2 in the visceral endoderm is necessary for the generation of primordial germ cells in the mouse embryo. Genes Dev. 2004;18:1838–49.

    Article  PubMed  Google Scholar 

  27. Chang H, Matzuk MM. Smad5 is required for mouse primordial germ cell development. Mech Dev. 2001;104:61–7.

    Article  PubMed  CAS  Google Scholar 

  28. Tremblay KD, Dunn NR, Robertson EJ. Mouse embryos lacking Smad1 signals display defects in extra-embryonic tissues and germ cell formation. Development. 2001;128:3609–21.

    PubMed  CAS  Google Scholar 

  29. Minegishi T, Tano M, Igarashi M, Rokukawa S, Abe Y, Ibuki Y, et al. Expression of follicle-stimulating hormone receptor in human ovary. Eur J Clin Invest. 1997;27:469–74.

    Article  PubMed  CAS  Google Scholar 

  30. Yamoto M, Minami S, Nakano R, Kobayashi M. Immunohistochemical localization of inhibin/activin subunits in human ovarian follicles during the menstrual cycle. J Clin Endocrinol Metab. 1992;74:989–93.

    Article  PubMed  CAS  Google Scholar 

  31. Sugiura K, Su YQ, Eppig JJ. Does Bone Morphogenetic Protein 6 (BMP6) Affect Female Fertility in the Mouse? Biol Reprod. 2010;83:997–1004.

  32. Zhao H, Qin Y, Kovanci E, Simpson JL, Chen ZJ, Rajkovic A. Analyses of GDF9 mutation in 100 Chinese women with premature ovarian failure. Fertil Steril. 2007;88:1474–6.

    Article  PubMed  Google Scholar 

  33. Spicer LJ, Aad PY, Allen DT, Mazerbourg S, Payne AH, Hsueh AJ. Growth differentiation factor 9 (GDF9) stimulates proliferation and inhibits steroidogenesis by bovine theca cells: influence of follicle size on responses to GDF9. Biol Reprod. 2008;78:243–53.

    Article  PubMed  CAS  Google Scholar 

  34. Wu X, Chen L, Brown CA, Yan C, Matzuk MM. Interrelationship of growth differentiation factor 9 and inhibin in early folliculogenesis and ovarian tumorigenesis in mice. Mol Endocrinol. 2004;18:1509–19.

    Article  PubMed  CAS  Google Scholar 

  35. Kaivo-Oja N, Bondestam J, Kamarainen M, Koskimies J, Vitt U, Cranfield M, et al. Growth differentiation factor-9 induces Smad2 activation and inhibin B production in cultured human granulosa-luteal cells. J Clin Endocrinol Metab. 2003;88:755–62.

    Article  PubMed  CAS  Google Scholar 

  36. Woodruff TK, Lyon RJ, Hansen SE, Rice GC, Mather JP. Inhibin and activin locally regulate rat ovarian folliculogenesis. Endocrinology. 1990;127:3196–205.

    Article  PubMed  CAS  Google Scholar 

  37. Lewis KA, Gray PC, Blount AL, MacConell LA, Wiater E, Bilezikjian LM, et al. Betaglycan binds inhibin and can mediate functional antagonism of activin signalling. Nature. 2000;404:411–4.

    Article  PubMed  CAS  Google Scholar 

  38. Wiater E, Vale W. Inhibin is an antagonist of bone morphogenetic protein signaling. J Biol Chem. 2003;278:7934–41.

    Article  PubMed  CAS  Google Scholar 

  39. Reindollar RH, Byrd JR, McDonough PG. Delayed sexual development: a study of 252 patients. Am J Obstet Gynecol. 1981;140:371–80.

    PubMed  CAS  Google Scholar 

  40. Layman LC. Editorial: BMP15—the first true ovarian determinant gene on the X-chromosome? J Clin Endocrinol Metab. 2006;91:1673–6.

    Article  PubMed  CAS  Google Scholar 

  41. Galloway SM, McNatty KP, Cambridge LM, Laitinen MP, Juengel JL, Jokiranta TS, et al. Mutations in an oocyte-derived growth factor gene (BMP15) cause increased ovulation rate and infertility in a dosage-sensitive manner. Nat Genet. 2000;25:279–83.

    Article  PubMed  CAS  Google Scholar 

  42. Yan C, Wang P, DeMayo J, DeMayo FJ, Elvin JA, Carino C, et al. Synergistic roles of bone morphogenetic protein 15 and growth differentiation factor 9 in ovarian function. Mol Endocrinol. 2001;15:854–66.

    Article  PubMed  CAS  Google Scholar 

  43. Yoshino O, McMahon HE, Sharma S, Shimasaki S. A unique preovulatory expression pattern plays a key role in the physiological functions of BMP-15 in the mouse. Proc Natl Acad Sci USA. 2006;103:10678–83.

    Article  PubMed  CAS  Google Scholar 

  44. Elvin JA, Clark AT, Wang P, Wolfman NM, Matzuk MM. Paracrine actions of growth differentiation factor-9 in the mammalian ovary. Mol Endocrinol. 1999;13:1035–48.

    Article  PubMed  CAS  Google Scholar 

  45. Liao WX, Moore RK, Otsuka F, Shimasaki S. Effect of intracellular interactions on the processing and secretion of bone morphogenetic protein-15 (BMP-15) and growth and differentiation factor-9. Implication of the aberrant ovarian phenotype of BMP-15 mutant sheep. J Biol Chem. 2003;278:3713–9.

    Article  PubMed  CAS  Google Scholar 

  46. McNatty KP, Juengel JL, Reader KL, Lun S, Myllymaa S, Lawrence SB, et al. Bone morphogenetic protein 15 and growth differentiation factor 9 co-operate to regulate granulosa cell function. Reproduction. 2005;129:473–80.

    Article  PubMed  CAS  Google Scholar 

  47. Gougeon A. Regulation of ovarian follicular development in primates: facts and hypotheses. Endocr Rev. 1996;17:121–55.

    PubMed  CAS  Google Scholar 

  48. **ao S, Robertson DM, Findlay JK. Effects of activin and follicle-stimulating hormone (FSH)-suppressing protein/follistatin on FSH receptors and differentiation of cultured rat granulosa cells. Endocrinology. 1992;131:1009–16.

    Article  PubMed  CAS  Google Scholar 

  49. Hasegawa Y, Miyamoto K, Abe Y, Nakamura T, Sugino H, Eto Y, et al. Induction of follicle stimulating hormone receptor by erythroid differentiation factor on rat granulosa cell. Biochem Biophys Res Commun. 1988;156:668–74.

    Article  PubMed  CAS  Google Scholar 

  50. Richards JS, Ireland JJ, Rao MC, Bernath GA, Midgley AR Jr, Reichert LE Jr. Ovarian follicular development in the rat: hormone receptor regulation by estradiol, follicle stimulating hormone and luteinizing hormone. Endocrinology. 1976;99:1562–70.

    Article  PubMed  CAS  Google Scholar 

  51. Orisaka M, Orisaka S, Jiang JY, Craig J, Wang Y, Kotsuji F, et al. Growth differentiation factor 9 is antiapoptotic during follicular development from preantral to early antral stage. Mol Endocrinol. 2006;20:2456–68.

    Article  PubMed  CAS  Google Scholar 

  52. Miyoshi T, Otsuka F, Suzuki J, Takeda M, Inagaki K, Kano Y, et al. Mutual regulation of follicle-stimulating hormone signaling and bone morphogenetic protein system in human granulosa cells. Biol Reprod. 2006;74:1073–82.

    Article  PubMed  CAS  Google Scholar 

  53. Otsuka F, Yamamoto S, Erickson GF, Shimasaki S. Bone morphogenetic protein-15 inhibits follicle-stimulating hormone (FSH) action by suppressing FSH receptor expression. J Biol Chem. 2001;276:11387–92.

    Article  PubMed  CAS  Google Scholar 

  54. Lei ZM, Mishra S, Zou W, Xu B, Foltz M, Li X, et al. Targeted disruption of luteinizing hormone/human chorionic gonadotropin receptor gene. Mol Endocrinol. 2001;15:184–200.

    Article  PubMed  CAS  Google Scholar 

  55. Pakarainen T, Zhang FP, Nurmi L, Poutanen M, Huhtaniemi I. Knockout of luteinizing hormone receptor abolishes the effects of follicle-stimulating hormone on preovulatory maturation and ovulation of mouse graafian follicles. Mol Endocrinol. 2005;19:2591–602.

    Article  PubMed  CAS  Google Scholar 

  56. Pangas SA, Li X, Robertson EJ, Matzuk MM. Premature luteinization and cumulus cell defects in ovarian-specific Smad4 knockout mice. Mol Endocrinol. 2006;20:1406–22.

    Article  PubMed  CAS  Google Scholar 

  57. Weenen C, Laven JS, Von Bergh AR, Cranfield M, Groome NP, Visser JA, et al. Anti-Mullerian hormone expression pattern in the human ovary: potential implications for initial and cyclic follicle recruitment. Mol Hum Reprod. 2004;10:77–83.

    Article  PubMed  CAS  Google Scholar 

  58. Gruijters MJ, Visser JA, Durlinger AL, Themmen AP. Anti-Mullerian hormone and its role in ovarian function. Mol Cell Endocrinol. 2003;211:85–90.

    Article  PubMed  CAS  Google Scholar 

  59. Baarends WM, Uilenbroek JT, Kramer P, Hoogerbrugge JW, van Leeuwen EC, Themmen AP, et al. Anti-mullerian hormone and anti-mullerian hormone type II receptor messenger ribonucleic acid expression in rat ovaries during postnatal development, the estrous cycle, and gonadotropin-induced follicle growth. Endocrinology. 1995;136:4951–62.

    Article  PubMed  CAS  Google Scholar 

  60. Dragovic RA, Ritter LJ, Schulz SJ, Amato F, Armstrong DT, Gilchrist RB. Role of oocyte-secreted growth differentiation factor 9 in the regulation of mouse cumulus expansion. Endocrinology. 2005;146:2798–806.

    Article  PubMed  CAS  Google Scholar 

  61. Su YQ, Sugiura K, Li Q, Wigglesworth K, Matzuk MM, Eppig JJ. Mouse oocytes enable LH-induced maturation of the cumulus-oocyte complex via promoting EGF receptor-dependent signaling. Mol Endocrinol. 2010;24:1230–9.

    Google Scholar 

  62. Hutchison JS, Zeleznik AJ. The corpus luteum of the primate menstrual cycle is capable of recovering from a transient withdrawal of pituitary gonadotropin support. Endocrinology. 1985;117:1043–9.

    Article  PubMed  CAS  Google Scholar 

  63. Hiroi H, Christenson LK, Strauss JF 3rd. Regulation of transcription of the steroidogenic acute regulatory protein (StAR) gene: temporal and spatial changes in transcription factor binding and histone modification. Mol Cell Endocrinol. 2004;215:119–26.

    Article  PubMed  CAS  Google Scholar 

  64. McNatty KP, Henderson KM. Gonadotrophins, fecundity genes and ovarian follicular function. J Steroid Biochem. 1987;27:365–73.

    Article  PubMed  CAS  Google Scholar 

  65. Onichtchouk D, Chen YG, Dosch R, Gawantka V, Delius H, Massague J, et al. Silencing of TGF-beta signalling by the pseudoreceptor BAMBI. Nature. 1999;401:480–5.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr Heather M. Martinez for her helpful discussion and critical reading of the manuscript. This work was supported in part by Health and Labor Sciences Research Grants from the Ministry of Health, Labor and Welfare of Japan, Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osamu Yoshino.

About this article

Cite this article

Yoshino, O., Shi, J., Osuga, Y. et al. The function of bone morphogenetic proteins in the human ovary. Reprod Med Biol 10, 1–7 (2011). https://doi.org/10.1007/s12522-010-0072-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12522-010-0072-3

Keywords

Navigation