Log in

Modelling wind-erosion risk in the Laghouat region (Algeria) using geomatics approach

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Wind-erosion risk is a challenge that threatens land development in dry-land regions. Soil analysis, remote sensing, climatic, vegetal cover and topographic data were used in a geographic information system (GIS), using multi-criteria analysis (MCA) to map wind-erosion risk (Rwe) in Laghouat, Algeria. The approach was based on modelling the risk and incorporating topographic and climatic effects. The maps were coded according to their sensitivity to wind erosion and to their socio-economic potential, from low to very high. By overlap** the effects of these layers, qualitative maps were drawn to reflect the potential sensitivity to wind erosion per unit area. The results indicated that severe wind erosion affects mainly all the southern parts and some parts in the north of Laghouat, where wind-erosion hazard (Hwe) is very high in 43% of the total area, and which was affected mainly by natural parameters such as soil, topography and wind. The results also identified features vulnerable to Rwe. The product of the hazard and the stake maps indicated the potential risk areas that need preventive measures; this was more than half of the study area, making it essential to undertake environmental management and land-use planning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Afrasiab P, Delbari M (2013) Assessing the risk of soil vulnerability to wind erosion through conditional simulation of soil water content in Sistan plai. Iran Environ Earth Sci 70:2895–2905

    Article  Google Scholar 

  • Al-Bakri JT, Brown L, Gedalof Z, Berg A, Nickling W, Khresat S, Salahat M, Hani S (2016) Modelling desertification risk in the north-west of Jordan using geospatial and remote sensing techniques. Geomatics, Nat Hazards Risk 7(2):531–549. doi:10.1080/19475705.2014.945102

    Article  Google Scholar 

  • Bagnold RA (1941) The physics of blown sand and desert dunes. Methuen and Company, London, p 265

    Google Scholar 

  • Barahona E (1984) Determinaciones analíticas en suelos. Normalización de métodos IV Determinación de carbonatos totales y caliza activa (Grupo de trabajo de normalización de métodos analíticos) En: Actas del I Congreso de la Ciencia del Suelo Madrid I p 53–69

  • Bensaid A (2006) SIG et télédétection pour l’étude de l’ensablement dans une zone aride: le cas de Naâma (Algérie). Thèse de Doctorat soutenue à l’Université J Fourier de Grenoble

  • Bernoulli D (1938) Specimen Theoriae Novae de Mensura Sortis {Commentarii Academiae Scientiarum Imperialis Petropolitanae (5, 175-192, 1738)}. Econometrica 22(1954):23–36

    Google Scholar 

  • Bielders CL, Rajot JL, Michels K (2004) L'érosion éolienne dans le Sahel Nigérien: influence des pratiques culturales actuelles et méthodes de lutte. Sécheresse 15(1):19–32

    Google Scholar 

  • Borrelli P, Ballabio C, Panagos P, Montanarella L (2004) Wind erosion susceptibility of European soils. Geoderma 232–234:471–478

    Google Scholar 

  • Bryan RB (1968) The development, use and efficiency of indices of soil erodibility. Geoderma 2:5–26

    Article  Google Scholar 

  • Chepil WS (1942) Measurement of wind erosiveness of soils by the dry sieving procedure. Sci Agric 25:154–160

    Google Scholar 

  • Chepil WS (1950) Properties of soil which influence wind erosion: I. The governing principle of surface roughness. Soil Sci 69:149–162

    Article  Google Scholar 

  • Chepil WS, Woodruff NP (1954) Estimations of wind erodibility of field surfaces. J Soil Water Conserv 9:257–265

    Google Scholar 

  • Chepil WS, Siddoway FH, Armbrust DV (1962) Climatic factor for estimating wind erodibility of farm fields. J Soil Water Conserv 17:162–165

    Google Scholar 

  • De Bruin K, Dellink RB, Ruijs A, Bolwidt L, van Buuren A, Graveland J, de Groot RS, Kuikman PJ, Reinhard S, Roetter RP, Tassone VC, Verhagen A, van Ierland EC (2009) Adapting to climate change in The Netherlands: an inventory of climate adaptation options and ranking of alternatives. Clim Chang 95:23–45

    Article  Google Scholar 

  • Djebaili (1984) Steppe Algérienne phytosociologie et écologie OPU Alger 177p

  • Dong ZB, Wang XM, Liu LY (2000) Wind erosion in arid and semiarid China: an overview. J Soil Water Conserv 55(4):439–444

    Google Scholar 

  • Du H, Xue X, Wang T, Deng X (2015) Assessment of wind-erosion risk in the watershed of the Ningxia-Inner Mongolia Reach of the Yellow River, northern China. Aeolian Res 17:193–204

    Article  Google Scholar 

  • Ellis JT, Douglas JS, Eugene JF, Bailiang L (2011) Temporal and spatial variability of aeolian sand transport: implications for field measurements. Aeolian Res. doi:10.1016/j.aeolia.2011.06.001

  • Farooq A (2012) Spectral vegetation indices performance evaluated for Cholistan Desert. J Geogr Reg Plann 5(6):165–172

    Google Scholar 

  • Farr TG, Rosen PA, Caro E, Crippen R, Duren R, Hensley S, Kobrick M, Paller M, Rodriguez E, Roth L, Seal D, Shaffer S, Shimada J, Umland J, Werner M, Oskin M, Burbank D, Alsdorf D (2007) The shuttle radar topography mission. Rev Geophys 45:1944–9208. doi:10.1029/2005RG000183

  • Feyisa GL, Meilby H, Fensholt R, Proud SR (2014) Automated water extraction index: a new technique for surface water map** using Landsat imagery. Remote Sens Environ 140:23–35

    Article  Google Scholar 

  • Food and Agriculture Organization of the United Nations (FAO) (1960) Soil erosion by wind and measures for its control on agricultural lands. FAO Agr Development Paper No 71

  • Fryrear DW (1986) A field dust sampler. J Soil Water Conserv 41:117–120

    Google Scholar 

  • Funk R, Skidmore EL, Hagen LJ (2004) Comparison of wind erosion measurements in Germany with simulated soil losses by WEPS. Environ Model Softw 19:177–183

    Article  Google Scholar 

  • Gregory JM, Wilson GR, Singh UB, Darwish MM (2004) TEAM: integrated, process-based wind-erosion model. Environ Model Softw 19:205–215

    Article  Google Scholar 

  • Guettouche MS, Guendouz M (2007) Modélisation et évaluation de l’érosion éolienne potentielle des sols cultivables dans le Hodna (Nord-Est algérien). Sécheresse 18(4):254–263

    Google Scholar 

  • Hagen LJ (1996) Crop residue effects on aerodynamic processes and wind erosion. Theor Appl Climatol 54:39–46

    Article  Google Scholar 

  • Hesp P, Davidson-Arnott R, Walker I, Ollerhead J (2005) Flow dynamics over a foredune at Prince Edward Island, Canada. Geomorphology 65:71–84

    Article  Google Scholar 

  • Hoffmann C, Funk R, Wieland R, Li Y, Sommer M (2008) Effects of grazing and topography on dust flux and deposition in the **lingele grassland. Inner Mongolia J Arid Environ 72:792–807

    Article  Google Scholar 

  • Holmgren G (1967) A rapid citrate—dithionite extractable iron procedure. Soil Sci Soc Am Proc 31:210–211

    Article  Google Scholar 

  • Houyou Z, Bielders CL, Benhorma HA, Dellal A, Boutemdje A (2014) Evidence of strong land degradation by wind erosion as a result of rainfed crop** in the Algerian steppe: a case study at Laghouat. Land degrad Develop. doi:10.1002/ldr.2295

  • Huang JF, Zhang C, Prospero JM (2010) African dust outbreaks: a satellite perspective of temporal and spatial variability over the tropical Atlantic Ocean. J Geophys Res 115:D05202

    Google Scholar 

  • Iversen JD, Rasmussen KR (1994) Effect of slope on saltation threshold. Sedimentology 41:721–728

    Article  Google Scholar 

  • Janssen R, Rietveld P (1990) Multicriteria analysis and geographical information systems: an application to agricultural land use in the Netherlands. In Geographical information systems for urban and regional planning pp 129–139

  • Khan A, Naz BS, Bowling LC (2015) Separating snow, clean and debris covered ice in the Upper Indus Basin, Hindukush-Karakoram-Himalayas, using Landsat images between 1998 and 2002. J Hydrol 521:46–64

    Article  Google Scholar 

  • Khresat S, Al-Bakri J, Al-Tahhan R (2008) Impacts of land use/cover change on soil properties in the mediterranean region of northwestern Jordan. Land Degrad Develop 19:397–407

    Article  Google Scholar 

  • Koo BK, O'connell PE (2006) An integrated modelling and multicriteria analysis approach to managing nitrate diffuse pollution: 2. A case study for a chalk catchment in England. Sci Total Environ 358(1):1–20

    Google Scholar 

  • Leys JF (1991) Towards a better model of the effect of prostrate vegetation cover on wind erosion. Vegetatio 91:49–58

    Article  Google Scholar 

  • Li L, Du S, Wu L, Liu G (2009) An overview of soil loss tolerance. Catena 78:93–99

    Article  Google Scholar 

  • Li J, Okin GS, Tatarko J, Webb NP, Herrick JE (2014) Consistency of wind erosion assessments across land use and land cover types: a critical analysis. Aeolian Res 15:253–260

    Article  Google Scholar 

  • Li C, Huang H, Li L, Gao Y, Ma Y, Amini F (2015) Geotechnical hazards assessment on wind-eroded desert embankment in Inner Mongolia Autonomous Region, North China. Nat Hazards 76:235–257

    Article  Google Scholar 

  • Liu HQ, Huete A (1995) A feedback based modification of the NDVI to minimize canopy background and atmospheric noise. IEEE Trans on Geosci Remote Sen 33(2):457–465

    Article  Google Scholar 

  • Liu G, Zhang Q, Li G, Doronzo DM (2016) Response of land cover types to land surface temperature derived from Landsat-5 TM in Nan**g Metropolitan Region, China. Environ Earth Sci 75:1386. doi:10.1007/s12665-016-6202-4

    Article  Google Scholar 

  • Loveland PJ, Whalley WR (1991) Particle size analysis. In: Smith KA, Mullis CE (eds) Soil analysis: physical methods. Marcel Dekker, New York, pp 271–328

    Google Scholar 

  • Mezosi G, Blanka V, Bata T, Kovács F, Meyer B (2015) Estimation of regional differences in wind erosion sensitivity in Hungary. Nat Hazards Earth Syst Sci 15:97–107

    Article  Google Scholar 

  • Mirmousavi SH (2016) Regional modeling of wind erosion in the north west and south west of Iran. Eurasian Soil Sci 49(8):942–953

    Article  Google Scholar 

  • Morgan BPC (1995) Soil erosion and conservation. Longman, Essex, p 3

    Google Scholar 

  • Munson SM, Belnap J, Okin GS (2011) Responses of wind erosion to climate-induced vegetation changes on the Colorado Plateau. PNA S 108:3854–3859

    Article  Google Scholar 

  • Nordstrom KF, Hotta S (2004) Wind erosion from cropland in the USA: a review of problems, solutions and prospects. Geoderma 121:157–167

    Article  Google Scholar 

  • Nyeko M (2012) GIS and multi-criteria decision analysis for land use resource planning. J Geogr Inf Syst 4:341–348

    Google Scholar 

  • O’Loingsigh T, McTainsh GH, Tews EK, Strong CL, Ley JF, Shinkfield P, Tapper NJ (2014) The dust storm index (DSI): a method for monitoring broad scale wind erosion using meteorological records. Aeolian Res 12:29–40

    Article  Google Scholar 

  • Peron A (1883) Description géologique de l’Algérie. Paris, G. Masson, Edireur 204p

  • Petta RA, de Carvalho LV, Erasmi S, Jones C (2013) Evaluation of desertification processes in Seridó region (NE Brazil). Int J Geosci 4(05):12

    Article  Google Scholar 

  • Pierre C, Bergametti G, Marticorena B, Touré AA, Rajot JL, Kergoat L (2014) Modeling wind erosion flux and its seasonality froma cultivated sahelian surface: a case study in Niger. Catena 122:61–71

    Article  Google Scholar 

  • Pouget M (1980) Les relations sol-végétation dans les steppes sud algéroises. Mémoire de thèse. Travaux et documents de l’ORSTOM n° 116, P 555

  • Quezel P (2000) Réflexions sur l’évolution de la flore et de la vegetation au Maghreb méditerranéen. Ibis Press, Paris 117p

    Google Scholar 

  • Rabus B, Eineder M, Roth A, Bamler R (2003) The shuttle radar topography mission—a new class of digital elevation models acquired by space borne radar. ISPRS J Photogramm Remote Sen 57(4):241–262

    Article  Google Scholar 

  • Raissouni A, Khali-Issa L, El Arrim A, Maâtouk M, Passalacqua R (2012) GIS-based model to assess erosion sensitivity in northern Morocco. Laou watershed case study. Int J Geosci 3:610–626

    Article  Google Scholar 

  • Ravi S, D'Odorico P, Okin GS (2007) Hydrologic and aeolian controls on vegetation patterns in arid landscapes. Geophys Res Lett 34:L24S23

    Article  Google Scholar 

  • Reuter HI, Lado LR, Hengl T, Montanarella L (2010) Modeling wind erosion events—bridging the gap between digital soil map** and digital soil risk assessment. Chapter 23

  • Richards LA (1965) Physical condition of water in soil. In: Black CA (ed) Methods of soil analysis. Am Soc Agron, Madison, pp 128–137

    Google Scholar 

  • Ritter E (1902) Le djebel Amour et les Monts des OuledNails. Bulletin du service de la carte géologique de l’Algérie. N° 3 2 ème série 100p

  • Salemkour N, Benchouk N, Nouasria D, Kherief S, Belhamra M (2013) Effets de la mise en repos sur les caractéristiques floristiques et pastorale des parcours steppiques de la région de Laghouat (Algérie). J régions Arides CRSTRA 103–114

  • Seltzer P (1946) Le climat de l’Algérie. Alger, Algérie, Institut de météorologie et physique du globe 219p

  • Shao Y (2000) Physics and modeling of wind erosion. Kluwer Academic Publishers, USA

    Google Scholar 

  • Shi P, Yan P, Yuan Y, Nearing MA (2004) Wind erosion research in China: past, present and future. Progress Phys Geogr 28(3):366–386

    Article  Google Scholar 

  • Shi H, Gao Q, Qi Y, Liu J, Hu Y (2010) Wind erosion hazard assessment of the Mongolian Plateau using FCM and GIS techniques. Environ Earth Sci 61:689–697

    Article  Google Scholar 

  • Skidmore EL (2000) Air, soil, and water quality as influenced by wind erosion and strategies for mitigation. AGRONENVIRON 2000, 2”d International Symposium of New Technologies for Environmental Monitoring and Agro-Applications. Proceedings pp 216-221

  • Song Y, Liu L, Yan P, Cao T (2005) A review of soil erodibility in water and wind erosion research. J Geogr Sci 15(2):167–176

    Article  Google Scholar 

  • Srinivasan R, Engel BA (1991) Effect of slope prediction methods on slope and erosion estimates, applied engineering in agriculture, Vol 7 6, pp 779-783

  • Taibi AN (1997) Le piémont sud du djebel Amour (Atlas saharien, Algérie), apport de la télédétection satellitaire à l’étude d’un milieu en dégradation. Ph.D. thesis, Université Denis Diderot, Paris VII, 310

  • Tyurin IV (1951) Analytical procedure for a comparative study of soil humus. Trudy Pochv. Inst Dokuchayeva 38:5–9

    Google Scholar 

  • Wang PL, Shi ZH, Wu GL, Fang NF (2014) Freeze/thaw and soil moisture effects on wind erosion. Geomorphology 207:141–148

    Article  Google Scholar 

  • Webb NP, Strong CL (2011) Soil erodibility dynamics and its representation for wind erosion and dust emission models. Aeolian Res 3:165–179

    Article  Google Scholar 

  • Wright DB, Mantilla R, Peters-Lidard CD (2017) A remote sensing-based tool for assessing rainfall-driven hazards. Environ Model Softw 90:34–54

    Article  Google Scholar 

  • Yang X, Leys J (2014) Map** wind erosion hazard in Australia using MODIS-derived ground cover, soil moisture and climate data. Earth Environ Sci 17:012–275. doi:10.1088/1755-1315/17/1/012275

    Google Scholar 

  • Yang F, Lu C (2016) Assessing changes in wind erosion climatic erosivity in China’s dryland region during 1961–2012. J Geogr Sci 26(9):1263–1276. doi:10.1007/s11442-016-1325-9

    Article  Google Scholar 

  • Yang K, Tang Z (2012) Effectiveness of fly ash and polyacrylamide as a sand-fixing agent for wind erosion control. Water Air Soil Pollut 223:4065–4074

    Article  Google Scholar 

  • Yue Y, Shi P, Zou X, Ye X, Zhu A, Wang J (2015) The measurement of wind erosion through field survey and remote sensing: a case study of the Mu Us Desert. China Nat Hazards. doi:10.1007/s11069-014-1516-6

  • Zhang G, Zhang Z, Liu J (2001) Spatial distribution of wind erosion and its driving factors in China. ​J Geogr Sci 11(2):127–139

Download references

Acknowledgements

The authors thank Mr. David Nesbitt for the English revision and the Department of Soil, Faculty of Sciences, University of Granada, Spain, for the laboratory analysis of this research. The authors also thank Editor-in-Chief Abdullah M. Al-Amri and Associate Editor Domenico Doronzo for their useful comments and suggestions that greatly contributed to improving the final version of the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Djouher Saadoud.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saadoud, D., Guettouche, M.S., Hassani, M. et al. Modelling wind-erosion risk in the Laghouat region (Algeria) using geomatics approach. Arab J Geosci 10, 363 (2017). https://doi.org/10.1007/s12517-017-3139-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-017-3139-1

Keywords

Navigation