Log in

Structural elements and incremental strain history of the basement rocks of Um Had area, central Eastern Desert, Egypt

العناصر التركيبية وتاريخ الانفعال المتزايد في الأجزاء الواقعة جنوب غرب صخور القاع: مثال من منطقة أم حاد ، وسط الصحراء الشرقية ، مصر

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The Um Had area, central Eastern Desert, Egypt shows a regional stretching in the NW–SE and a contraction in the NE–SW direction. Major NW–SE folds, small recumbent folds, and local thrusts and reverse faults were recognized. Complicated relation between folds and boudinage was identified. This stretching amount ranges from 1.282 to 1.309. Earlier coaxial and later non-coaxial strains were inferred. The change from axial to non-coaxial stress regime was gradual and the latter was associated with minor clockwise and anticlockwise rotation of structural elements. During the non-coaxial strain, strain fringes were formed as a consequence of the high circulation of fluids in low temperature and high pressure conditions. Superimposed strain fringes indicating right- and left-lateral senses of movement were recognized. At least three generations of fringes were recognized, implying three stages of non-coaxial stretching. Each generation has about 15 increments which show irregular strain gradient and intensity over the different increments. Eastwards, the strain increments became mature and westwards, the finite strain increases. The strongest finite strain was found in a narrow belt delimiting the basement rocks on the west and underlying the Phanerozoic sediments. Chocolate-tablet structure was recorded and indicates later multidirectional tension. Not all Nubia Sandstone exposures are overlying the basement rocks and some are separated by NW–SE normal faults. Major NW–SE normal faults are cutting basement rocks of different ages.

Abstract

أحمدمصر – جامعة جنوب الوادي - كلية العلوم – قسم الجيولوجيامنطقة أم حاد ، وسط الصحراء الشرقية ، مصر ، تعتبر مثال لدراسة طبيعة الحد الغربي لصخور القاع المكشوفة. هذه المنطقة بها استطالة عامة في اتجاه شمال غرب وانضغاط في اتجاه شمال شرق، وقد أمكن التعرف على طيات كبيرة ومتوسطة الحجم لها محاور تتوجه شمال غرب ، وطيات أخرى نائمة recumbent وكذلك فوالق دسرية ومعكوسة، كما تم رصد علاقات معقدة بين البوديناج boudinage والطيات ، وتم استخدام البوديناج لحساب قيمة الاستطالة والتي تراوحت بين 1.282 إلى 1.309. أمكن كذلك استنباط أن المنطقة تعرضت في وقت مبكر إلى انفعال محوري axial strain تلاه آخر غير محوري non-coaxial strain وقد حدث ذلك تدريجيا. أثناء الانفعال الغير محوري نشأت أهداب fringe في الأماكن البعيدة عن تأثير الانفعال الانضغاطي وفي اتجاه الاستطالة وذلك نتيجة لحركة الموائع fluids في درجة حرارة منخفضة وضغط مرتفع ، وقد أمكن التعرف على أهداب متراكبة superimposed دلت على حركات يمينية ويسارية متعاقبة. تم أيضا التعرف على ثلاث مراحل على الأقل من الأجيال generations الخاصة بالأهداب والتي تدل على مراحل متعاقبة من الاستطالة ، وقد تم احتساب على الأقل 15 مرحلة من الانفعال المتزايد increments ولكل منها شدته ، وهذا بدوره يدل على عدم الانتظام في قيمة الإجهاد والانفعال الذي تعرضت له الصخور. ناحية الشرق نجد أن الانفعال المتزايد incremental strain يصبح أكثر نضوجا ، بينما ناحية الغرب نجد أن الانفعال النهائي finite strain يصبح أكثر شدة ، وقد وجد اكبر انفعال في حزام ضيق يحد صخور القاع من الغرب مباشرة أسفل صخور الفانيروزويك الرسوبية. تم أيضا التعرف على ظاهرة تركيب قطع الشيكولاته chocolate-tablet structure والتي دلت على أن المنطقة قد تعرضت في أوقات لاحقة إلى شد من جميع الاتجاهات، كما تم أيضا ملاحظة أن الحجر الرملي النوبي يعلو مباشرة صخور القاع ، وفي بعض المواقع مفصولين بفوالق عادية تتوجه شمال غرب ، كم تم قياس فوالق عادية داخل صخور القاع تأخذ اتجاهات عديدة.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Akaad MK, Noweir AM (1969) Lithostratigraphy of the Hammamat–Um Seleimat district. Eastern Desert. Nature 223:284–285

    Article  Google Scholar 

  • Akaad MK, Noweir AM (1980) Geology and lithostratigraphy of the Arabian Desert orogenic belt of Egypt between lat. 25° 35′ and 26° 30′ N. Bull Inst Applied Geology (King Abdul Aziz University, Jeddah—Saudi Arabia) 3:127–135

    Google Scholar 

  • Akaad MK, Noweir AM, Kotb H (1979) Geology and petrochemistry of the granite association of the Arabian Desert orogenic Belt of Egypt between latitudes 25 35 and 26 30. Delta J Sci 3:107–151

    Google Scholar 

  • Akawy A (1999) Structural analysis of the basement complex in Wadi El Gemal area, South Eastern Desert, Egypt. Unpublished Ph.D. thesis (South Valley University, Egypt), 346 pp.

  • Akawy A (2003) Fault characterization and paleostress analysis in the Precambrian rocks west of the Meatiq Dome, Central Eastern Desert, Egypt. N Jb Geol Palaont Mh 228:1–35

    Google Scholar 

  • Bassiony MW (1987) Tectonic significance of late Proterozoic and structural trends in southeastern Egypt. Aswan Sci Tech Bull 8:477–508

    Google Scholar 

  • Beutner EC, Diegel FA (1985) Determination of fold kinematics from syntectonic fibers in pressure shadows, Martinsburg Slate, New Jersey. Am J Sci 285:16–50

    Google Scholar 

  • Choukroune P (1971) Contribution a l etude des mecanismes de la deformation avec schistosite grace aux cristallisations syncinematiques dans les zones abritees (pressure shadows). Bull Soc Geol Fr 13:257–271

    Google Scholar 

  • El Kalioubi B (1988) Deformation events, mineral facies and metamorphic conditions in the contact aureoles of the Hammamat Group around Um Had pluton, central Eastern Desert, Egypt. MERC Ain Shams University, Earth Sci Ser 2:172–190

    Google Scholar 

  • Ellis MA (1986) The determination of progressive deformation histories from antitaxial syntectonic crystal fibers. J Struct Geol 8:701–710

    Article  Google Scholar 

  • El Ramly MF (1972) A new geologic map for the basement in the Eastern Desert of Egypt, scale 1:1,000,000. Ann Geol Surv Egypt 2:1–18

    Google Scholar 

  • Essawy MA, Abu Zeid KM (1972) Atalla felsite and its neighbouring rhyolite flows and tuffs, Eastern Desert. Ann Geol Surv II:271–280

    Google Scholar 

  • Ferguson CC (1981) A strain reversal method for estimating extension from fragmented rigid inclusions. Tectonophysics 79:T43–52

    Article  Google Scholar 

  • Ferguson CC, Lloyd GE (1982) Palaeostress and strain estimates from boudinage structure and their bearing on the evolution of a major Variscan fold–thrust complex in Southwest England. Tectonophysics 88:269–289

    Article  Google Scholar 

  • Ferguson CC, Lloyd GE (1984) Extension analysis of stretched belemnites: a comparison of methods. Tectonophysics 101:199–206

    Article  Google Scholar 

  • Fritz H, Wallbrecher E, Khudier AA, Abu El Ela F, Dallmeyer DR (1996) Formation of Neoproterozoic metamorphic core complexes during oblique convergence (Eastern Desert, Egypt). J Afr Earth Sci 23:311–329

    Article  Google Scholar 

  • Ghobrial MG, Abdel Khalik ML (1967) The geology of Gebel Gattar and Gebel Dokhan areas. Geol Surv Egypt 40:1–26

    Google Scholar 

  • Grothaus B, Eppler D, Ehrlich R (1978) Depositional environment and structural implications of the Hammamat Formation, Egypt. Ann Geol Surv Egypt 9:564–590

    Google Scholar 

  • Hanmer S (1984) The potential use of planar and elliptical structures as indicators of strain regime and kinemetics of tectonic flow. Geol Surv Can Pap 84:133–142

    Google Scholar 

  • Kamal El Din GM, Akawy A, Abu El Atta S (2002) Structural geology and petrochemistry of Abu Shegeli Rifted blocks, Red Sea Region, Egypt. Boll Geofisica 42:57–60

    Google Scholar 

  • Lacassin R, Leloup PH, Tapponnier P (1993) Bounds on strain in large Tertiary shear zones of SE Asia from boudinage restoration. J Struct Geol 15:677–692

    Article  Google Scholar 

  • Lister GS, Snoke AW (1984) S–C mylonites. J Struct Geol 6:617–638

    Article  Google Scholar 

  • Lloyd GE, Ferguson CC (1989) Belemnites, strain analysis and regional tectonics: a critical appraisal. Tectonophysics 168:239–253

    Article  Google Scholar 

  • Lloyd GE, Ferguson CC, Reading K (1982) A stress-transfer model for the development of extension fracture boudinage. J Struct Geol 4:355–372

    Article  Google Scholar 

  • Masuda T, Shibutani T, Yamaguchi H (1995) Practical stress analysis using piedmontite microboudinage structures. J Struct Geol 17:1793–1795

    Article  Google Scholar 

  • Masuda T, Kimura N, Okamoto A, Miyake T, Omori Y (2007) Cessation of plastic deformation during exhumation of metamorphic tectonites revealed by microboudinage structures. J Struct Geol 29:159–165

    Article  Google Scholar 

  • Passchier CW (1987) Stable positions of rigid objects in non-coaxial flow: a study in vorticity analysis. J Struct Geol 9:679–690

    Article  Google Scholar 

  • Passchier CW, Simpson C (1986) Porphyroclast systems as kinematic indicators. J Struct Geol 8:831–844

    Article  Google Scholar 

  • Passchier CW, Trouw RAJ (2005) Microtectonics. Springer, Berlin, p 366

    Google Scholar 

  • Powell CMA, Vernon RH (1979) Growth and rotation history of garnet porphyroblasts with inclusion spirals in a Karakoram schist. Tectonophysics 54:25–43

    Article  Google Scholar 

  • Ramsay JG (1967) Folding and fracturing of rocks. McGraw-Hill, New York, p 568

    Google Scholar 

  • Ramsay JG, Huber MI (1983) The techniques of modern structural geology. Volume 1: strain analysis. Academic, London, p 308

    Google Scholar 

  • Ries AC, Shackleton RM, Graham RH, Fitches WR (1983) Pan-African structures, ophiolites and mélange in the Eastern Desert of Egypt: a traverse at 26° N. J Geol Soc London 140:75–95

    Article  Google Scholar 

  • Rowland SM, Duebendorfer EM (1994) Structural analysis and synthesis, 2nd edn. Blackwell Scientific, Ames, p 279

    Google Scholar 

  • Simpson C, Schmid SM (1983) An evaluation of criteria to determine the sense of movement in sheared rocks. Bull Geol Soc Am 94:1281–1288

    Article  Google Scholar 

  • Spry A (1969) Metamorphic textures. Pergamon, Oxford, p 350

    Google Scholar 

  • Takagi H, Ito M (1988) The use of asymmetric pressure shadows in mylonites to determine the sense of shear. J Struct Geol 10:347–360

    Article  Google Scholar 

  • Twiss RJ, Moores M (1992) Structural geology. Freeman, San Francisco, p 532

    Google Scholar 

  • Urai JL, Williams PF, van Roermund HLM (1991) Kinematics of crystal growth in syntectonic fibrous veins. J Struct Geol 13:823–836

    Article  Google Scholar 

Download references

Acknowledgments

I thank the AJGS reviewers for revising and enhancing the manuscript. Prof. Dr. Samir El Gaby and Prof. Dr. Moustafa Youssef (Assiut University) are thanked for discussion of the results and his valuable comments and Dr. Colin Ferguson and Dr. Geoff Lloyd (Leeds University, UK) for the availability of the Strain reversal software via internet.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Akawy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akawy, A. Structural elements and incremental strain history of the basement rocks of Um Had area, central Eastern Desert, Egypt. Arab J Geosci 2, 285–300 (2009). https://doi.org/10.1007/s12517-008-0029-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12517-008-0029-6

Keywords

Navigation