Log in

Flow Imaging: Cardiac Applications of 3D Cine Phase-Contrast MRI

  • Published:
Current Cardiovascular Imaging Reports Aims and scope Submit manuscript

Abstract

Global and regional blood flow dynamics are of pivotal importance to cardiac function. Fluid mechanical forces can affect hemolysis and platelet aggregation, as well as myocardial remodeling. In recent years, assessment of blood flow patterns based on time-resolved, three-dimensional, three-directional phase-contrast MRI (3D cine PC MRI) has become possible and rapidly gained popularity. Initially, this technique was mainly known for its intuitive and appealing visualizations of the cardiovascular blood flow. Most recently, the technique has begun to go beyond compelling images toward comprehensive and quantitative assessment of blood flow. In this article, cardiac applications of 3D cine PC MRI data are discussed, starting with a review of the acquisition and analysis techniques, and including descriptions of promising applications of cardiac 3D cine PC MRI for the clinical evaluation of myocardial, valvular, and vascular disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Richter Y, Edelman ER. Cardiology is flow. Circulation 2006, 113(23); 2679–2682.

    Article  PubMed  Google Scholar 

  2. • Carlhall CJ, Bolger A. Passing strange: flow in the failing ventricle. Circ Heart Fail 2010, 3(2); 326–331. This editorial discusses the routes, behaviors, and interactions of the blood transiting the ventricles in normal and failing hearts, and considers the possible impact of flow characteristics on the efficiency of ventricular function.

    Article  PubMed  Google Scholar 

  3. Kilner PJ, Yang GZ, Wilkes AJ, et al. Asymmetric redirection of flow through the heart. Nature 2000, 404(6779); 759–761.

    Article  PubMed  CAS  Google Scholar 

  4. Sutera SP, Mehrjardi MH. Deformation and fragmentation of human red blood cells in turbulent shear flow. Biophys J 1975, 15(1); 1–10.

    Article  PubMed  CAS  Google Scholar 

  5. Sallam AM, Hwang NH. Human red blood cell hemolysis in a turbulent shear flow: contribution of Reynolds shear stresses. Biorheology 1984, 21(6); 783–797.

    PubMed  CAS  Google Scholar 

  6. Kameneva MV, Burgreen GW, Kono K, et al. Effects of turbulent stresses upon mechanical hemolysis: experimental and computational analysis. ASAIO J 2004, 50(5); 418–423.

    Article  PubMed  Google Scholar 

  7. Stein PD, Sabbah HN. Measured turbulence and its effect on thrombus formation. Circ Res 1974, 35(4); 608–614.

    PubMed  CAS  Google Scholar 

  8. Becker RC, Eisenberg P, Turpie AG. Pathobiologic features and prevention of thrombotic complications associated with prosthetic heart valves: fundamental principles and the contribution of platelets and thrombin. Am Heart J 2001, 141(6); 1025–1037.

    Article  PubMed  CAS  Google Scholar 

  9. Wigström L, Sjöqvist L, Wranne B. Temporally resolved 3D phase-contrast imaging. Magn Reson Med 1996, 36(5); 800–803.

    Article  PubMed  Google Scholar 

  10. Wigström L, Ebbers T, Fyrenius A, et al. Particle trace visualization of intracardiac flow using time resolved 3D phase contrast MRI. Magn Reson Med 1999, 41(4); 793–799.

    Article  PubMed  Google Scholar 

  11. Kozerke S, Hasenkam JM, Pedersen EM, Boesiger P. Visualization of flow patterns distal to aortic valve prostheses in humans using a fast approach for cine 3D velocity map**. J Magn Reson Imaging 2001, 13(5); 690–698.

    Article  PubMed  CAS  Google Scholar 

  12. Markl M, Chan FP, Alley MT, et al. Time-resolved three-dimensional phase-contrast MRI. J Magn Reson Imaging 2003, 17(4); 499–506.

    Article  PubMed  Google Scholar 

  13. Markl M, Harloff A, Bley TA, et al. Time-resolved 3D MR velocity map** at 3T: improved navigator-gated assessment of vascular anatomy and blood flow. J Magn Reson Imaging 2007, 25(4); 824–831.

    Article  PubMed  Google Scholar 

  14. Johnson KM, Lum DP, Turski PA, et al. Improved 3D phase contrast MRI with off-resonance corrected dual echo VIPR. Magn Reson Med 2008, 60(6); 1329–1336.

    Article  PubMed  Google Scholar 

  15. • Uribe S, Beerbaum P, Sorensen TS, et al. Four-dimensional (4D) flow of the whole heart and great vessels using real-time respiratory self-gating. Magn Reson Med 2009, 62(4); 984–992. This article describes a respiratory self-gated 3D cine PC acquisition, which is tested by stroke volumes comparison with standard 2D PC MRI.

    Article  PubMed  Google Scholar 

  16. •• Dyverfeldt P, Kvitting JP, Sigfridsson A, et al. Assessment of fluctuating velocities in disturbed cardiovascular blood flow: in vivo feasibility of generalized phase-contrast MRI. J Magn Reson Imaging 2008, 28(3); 655–663. This article describes in vivo implementation and several cardiac examples of turbulence intensity assessment using 3D PC MRI.

    Article  PubMed  Google Scholar 

  17. •• Eriksson J, Carlhall CJ, Dyverfeldt P, et al. Semi-automatic quantification of 4D left ventricular blood flow. J Cardiovasc Magn Reson 2010, 12(1); 9. This article describes a method for user-independent semi-automatic quantification of left ventricular blood flow using 3D cine PC MRI. The analysis method can be used for analysis, visualization, and in vivo dataset-specific quality assessment.

    Article  PubMed  Google Scholar 

  18. •• Bolger AF, Heiberg E, Karlsson M, et al. Transit of blood flow through the human left ventricle mapped by cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2007, 9(5); 741–747. In this article, left ventricular blood flow is quantified based on pathline analysis, compartmentalization, and kinetic energy.

    Article  PubMed  Google Scholar 

  19. • Brix L, Ringgaard S, Rasmusson A, et al. Three dimensional three component whole heart cardiovascular magnetic resonance velocity map**: comparison of flow measurements from 3D and 2D acquisitions. J Cardiovasc Magn Reson 2009, 11; 3. This article evaluates 3D cine PC MRI by stroke volumes comparison with standard 2D PC MRI.

    Article  PubMed  Google Scholar 

  20. Frydrychowicz A, Landgraf B, Wieben O, Francois CJ. Images in Cardiovascular Medicine. Scimitar syndrome: added value by isotropic flow-sensitive four-dimensional magnetic resonance imaging with PC-VIPR (phase-contrast vastly undersampled isotropic projection reconstruction). Circulation 2010, 121(23); e434–436.

    Article  PubMed  Google Scholar 

  21. Kozerke S, Plein S. Accelerated CMR using zonal, parallel and prior knowledge driven imaging methods. J Cardiovasc Magn Reson 2008, 10; 29.

    Article  PubMed  Google Scholar 

  22. Baltes C, Kozerke S, Hansen MS, et al. Accelerating cine phase-contrast flow measurements using k-t BLAST and k-t SENSE. Magn Reson Med 2005, 54(6); 1430–1438.

    Article  PubMed  Google Scholar 

  23. Holland DJ, Malioutov DM, Blake A, et al. Reducing data acquisition times in phase-encoded velocity imaging using compressed sensing. J Magn Reson 2010, 203(2); 236–246.

    Article  PubMed  CAS  Google Scholar 

  24. Walker PG, Cranney GB, Scheidegger MB, et al. Semiautomated method for noise reduction and background phase error correction in MR phase velocity data. J Magn Reson Imaging 1993, 3(3); 521–530.

    Article  PubMed  CAS  Google Scholar 

  25. Bernstein M, Zhou X, Polzin J, et al. Concomitant gradient terms in phase contrast MR: analysis and correction. Magn Reson Med 1998, 39(2); 300–308.

    Article  PubMed  CAS  Google Scholar 

  26. Markl M, Bammer R, Alley MT, et al. Generalized reconstruction of phase contrast MRI: analysis and correction of the effect of gradient field distortions. Magn Reson Med 2003, 50(4); 791–801.

    Article  PubMed  CAS  Google Scholar 

  27. Petersson S, Dyverfeldt P, Gardhagen R, et al. Simulation of phase contrast MRI of turbulent flow. Magn Reson Med 2010, 64(4); 1039–1046.

    Article  PubMed  Google Scholar 

  28. Wigstrom L, Ebbers T, Fyrenius A, et al. Particle trace visualization of intracardiac flow using time-resolved 3D phase contrast MRI. Magn Reson Med 1999, 41(4); 793–799.

    Article  PubMed  CAS  Google Scholar 

  29. Kim WY, Walker PG, Pedersen EM, et al. Left ventricular blood flow patterns in normal subjects: a quantitative analysis by three-dimensional magnetic resonance velocity map**. J Am Coll Cardiol 1995, 26(1); 224–238.

    Article  PubMed  CAS  Google Scholar 

  30. Heiberg E, Ebbers T, Wigström L, Karlsson M. Three dimensional flow characterization using vector pattern matching. IEEE Trans Vis Comp Graphics 2003, 9; 313–319.

    Article  Google Scholar 

  31. • Roes SD, Hammer S, van der Geest RJ, et al. Flow assessment through four heart valves simultaneously using 3-dimensional 3-directional velocity-encoded magnetic resonance imaging with retrospective valve tracking in healthy volunteers and patients with valvular regurgitation. Invest Radiol 2009, 44(10); 669–675. This article describes a potential clinical application of cardiac 3D cine PC MRI: flow assessment through all four heart valves in patients with valvular regurgitation.

    Article  PubMed  Google Scholar 

  32. Westenberg JJ, Roes SD, Ajmone Marsan N, et al. Mitral valve and tricuspid valve blood flow: accurate quantification with 3D velocity-encoded MR imaging with retrospective valve tracking. Radiology 2008, 249(3); 792–800.

    Article  PubMed  Google Scholar 

  33. Hatle L, Brubakk A, Tromsdal A, Angelsen B. Noninvasive assessment of pressure drop in mitral stenosis by Doppler ultrasound. Br Heart J 1978, 40(2); 131–140.

    Article  PubMed  CAS  Google Scholar 

  34. Ebbers T, Wigstrom L, Bolger AF, et al. Estimation of relative cardiovascular pressures using time-resolved three-dimensional phase contrast MRI. Magn Reson Med 2001, 45(5); 872–879.

    Article  PubMed  CAS  Google Scholar 

  35. Ebbers T, Wigstrom L, Bolger AF, et al. Noninvasive measurement of time-varying three-dimensional relative pressure fields within the human heart. J Biomech Eng 2002, 124(3); 288–293.

    Article  PubMed  CAS  Google Scholar 

  36. Ebbers T, Farneback G. Improving computation of cardiovascular relative pressure fields from velocity MRI. J Magn Reson Imaging 2009, 30(1); 54–61.

    Article  PubMed  Google Scholar 

  37. Dyverfeldt P, Sigfridsson A, Knutsson H, Ebbers T. A Novel MRI Framework for the Quantification of Any Moment of Arbitrary Velocity Distributions. Magn Reson Med 2011, doi:10.1002/mrm.22649.

  38. Dyverfeldt P, Sigfridsson A, Kvitting JP, Ebbers T. Quantification of intravoxel velocity standard deviation and turbulence intensity by generalizing phase-contrast MRI. Magn Reson Med 2006, 56(4); 850–858.

    Article  PubMed  Google Scholar 

  39. Dyverfeldt P, Gardhagen R, Sigfridsson A, et al. On MRI turbulence quantification. Magn Reson Imaging 2009, 27(7); 913–922.

    Article  PubMed  Google Scholar 

  40. Nichols WW, O’Rourke MF. McDonald’s Blood Flow in Arteries; Theoretical, Experimental and Clinical Principles, Fifth Edition. Oxford: Oxford University Press; 2005.

  41. Fyrenius A, Wigstrom L, Ebbers T, et al. Three dimensional flow in the human left atrium. Heart 2001, 86(4); 448–455.

    Article  PubMed  CAS  Google Scholar 

  42. • Dyverfeldt P, Kvitting JPE, Carlhäll CJ, et al. Hemodynamic Aspects of Mitral Regurgitation Assessed by Generalized Phase-Contrast Magnetic Resonance Imaging. J Magn Reson Imaging 2011, In press.

  43. Fyrenius A, Wigstrom L, Bolger AF, et al. Pitfalls in Doppler evaluation of diastolic function: insights from 3-dimensional magnetic resonance imaging. J Am Soc Echocardiogr 1999, 12(10); 817–826.

    Article  PubMed  CAS  Google Scholar 

  44. Kvitting JP, Ebbers T, Wigstrom L, et al. Flow patterns in the aortic root and the aorta studied with time-resolved, 3-dimensional, phase-contrast magnetic resonance imaging: implications for aortic valve-sparing surgery. J Thorac Cardiovasc Surg 2004, 127(6); 1602–1607.

    Article  PubMed  Google Scholar 

  45. Markl M, Draney MT, Miller DC, et al. Time-resolved three-dimensional magnetic resonance velocity map** of aortic flow in healthy volunteers and patients after valve-sparing aortic root replacement. J Thorac Cardiovasc Surg 2005, 130(2); 456–463.

    Article  PubMed  Google Scholar 

  46. Kvitting JP, Dyverfeldt P, Sigfridsson A, et al. In vitro assessment of flow patterns and turbulence intensity in prosthetic heart valves using generalized phase-contrast MRI. J Magn Reson Imaging 2010, 31(5); 1075–1080.

    Article  PubMed  Google Scholar 

  47. • Markl M, Geiger J, Kilner PJ, et al. Time-resolved three-dimensional magnetic resonance velocity map** of cardiovascular flow paths in volunteers and patients with Fontan circulation. Eur J Cardiothorac Surg 2011, doi:10.1016/j.ejcts.2010.05.026.

Download references

Acknowledgment

Grant support is gratefully acknowledged from the Swedish Research Council and the Center of Industrial Information Technology (CENIIT) at Linkö** University, Sweden.

Disclosure

No potential conflict of interest relevant to this article was reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tino Ebbers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ebbers, T. Flow Imaging: Cardiac Applications of 3D Cine Phase-Contrast MRI. Curr Cardiovasc Imaging Rep 4, 127–133 (2011). https://doi.org/10.1007/s12410-011-9065-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12410-011-9065-9

Keywords

Navigation