Log in

Supercritical Carbon Dioxide Applications in Food Processing

  • Published:
Food Engineering Reviews Aims and scope Submit manuscript

Abstract

There are global trends for develo** green and sustainable technologies in food processing, due to the growing awareness of the importance of environmental preservation and the consumer demand for natural high-value food products. Meeting these particular requirements, supercritical carbon dioxide (SC-CO2) has emerged as an innovative and promising technology for the processing of food ingredients and products. Over the last two decades, applications of SC-CO2 have attracted much attention and made great advancements at both laboratory and industrial level. These advances include the extraction of target bioactive compounds from various food matrices, microencapsulation, or extrusion to produce fine particles, and the inactivation of pathogenic and spoilage microorganisms and endogenous enzymes for food preservation. An example of successfully applying SC-CO2 at the commercial level is the decaffeination of coffee. In this article, an overview of the SC-CO2 applications in food processing including extraction, transformation, preservation, and drying are presented. For each application category, principles, processing parameters, characteristics, and latest applications are critically reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Misra NN, Koubaa M, Roohinejad S, Juliano P, Alpas H, Inacio RS, Saraiva JA, Barba FJ (2017) Landmarks in the historical development of twenty first century food processing technologies. Food Res Int 97:318–339

    Article  CAS  PubMed  Google Scholar 

  2. Zhang ZH, Wang LH, Zeng XA, Han Z, Brennan CS (2019) Non-thermal technologies and its current and future application in the food industry: A review. Int J Food Sci Technol 54(1):1–13

    Article  CAS  Google Scholar 

  3. Knez Z, Markocic E, Leitgeb M, Primozic M, Hrncic MK, Skerget M (2014) Industrial applications of supercritical fluids: A review. Energy 77:235–243

    Article  CAS  Google Scholar 

  4. Palmer MV, Ting SST (1995) Applications for supercritical-fluid technology in food-processing. Food Chem 52(4):345–352

    Article  CAS  Google Scholar 

  5. Raventos M, Duarte S, Alarcon R (2002) Application and possibilities of supercritical CO2 extraction in food processing industry: an overview. Food Sci Technol Int 8(5):269–284

    Article  CAS  Google Scholar 

  6. Essien SO, Young B, Baroutian S (2020) Recent advances in subcritical water and supercritical carbon dioxide extraction of bioactive compounds from plant materials. Trends Food Sci Technol 97:156–169

    Article  CAS  Google Scholar 

  7. Pereira CG, Meireles MAA (2010) Supercritical fluid extraction of bioactive compounds: fundamentals, applications and economic perspectives. Food Bioprocess Technol 3(3):340–372

    Article  CAS  Google Scholar 

  8. Perrut M, Perrut V (2019) Supercritical fluid applications in the food industry. Academic Press Ltd-Elsevier Science Ltd, London

    Book  Google Scholar 

  9. Silva EK, Meireles MAA, Saldana MDA (2020) Supercritical carbon dioxide technology: a promising technique for the non-thermal processing of freshly fruit and vegetable juices. Trends Food Sci Technol 97:381–390

    Article  CAS  Google Scholar 

  10. Smigic N, Djekic I, Tomic N, Udovicki B, Rajkovic A (2019) The potential of foods treated with supercritical carbon dioxide (sc-CO2) as novel foods. Br Food J 121(3):815–834

    Article  Google Scholar 

  11. Lack E, Seidlitz H (1993) Commercial scale decaffeination of coffee and tea using supercritical CO2, in: King MB, Bott TR (Eds.), Extraction of Natural Products Using Near-Critical Solvents. Springer, Dordrecht

  12. Bubalo MC, Vidovic S, Redovnikovic IR, Jokic S (2018) New perspective in extraction of plant biologically active compounds by green solvents. Food Bioprod Process 109:52–73

    Article  CAS  Google Scholar 

  13. Gil-Chavez GJ, Villa JA, Ayala-Zavala JF, Heredia JB, Sepulveda D, Yahia EM, Gonzalez-Aguilar GA (2013) Technologies for extraction and production of bioactive compounds to be used as nutraceuticals and food ingredients: An overview. Compr Rev Food Sci Food Saf 12(1):5–23

    Article  CAS  Google Scholar 

  14. Herrero M, Mendiola JA, Cifuentes A, Ibanez E (2010) Supercritical fluid extraction: recent advances and applications. J Chromatogr A 1217(16):2495–2511

    Article  CAS  PubMed  Google Scholar 

  15. Wijngaard H, Hossain MB, Rai DK, Brunton N (2012) Techniques to extract bioactive compounds from food by-products of plant origin. Food Res Int 46(2):505–513

    Article  CAS  Google Scholar 

  16. Gomes MTMS, Santos DT, Meireles MAA (2012) Trends in particle formation of bioactive compounds using supercritical fluids and nanoemulsions. Food and Public Health 2(5):142–152

    Article  Google Scholar 

  17. Vardanega R, Nathia-Neves G, Veggi PC, Meireles MAA (2019) 3 Supercritical fluid processing and extraction of food. Green Food Processing Techniques: Preservation, Transformation and Extraction: 57

  18. Rodriguez-Meizoso I, Plaza M (2015) Particle Formation of Food Ingredients by Supercritical Fluid Technology, in: Fornari T, Stateva RP (Eds.), High pressure fluid technology for green food processing. Springer, New York

  19. Garcia-Gonzalez L, Geeraerd AH, Spilimbergo S, Elst K, Van Ginneken L, Debevere J, Van Impe JF, Devlieghere F (2007) High pressure carbon dioxide inactivation of microorganisms in foods: The past, the present and the future. Int J Food Microbiol 117(1):1–28

    Article  CAS  PubMed  Google Scholar 

  20. Hu WF, Zhou LY, Xu ZZ, Zhang Y, Liao XJ (2013) Enzyme Inactivation in Food Processing using High Pressure Carbon Dioxide Technology. Crit Rev Food Sci Nutr 53(2):145–161

    Article  CAS  PubMed  Google Scholar 

  21. Spilimbergo S, Bertucco A, Lauro F, Bertoloni G (2003) Inactivation of Bacillus subtilis spores by supercritical CO2 treatment. Innovative Food Sci Emerging Technol 4(2):161–165

    Article  CAS  Google Scholar 

  22. Bourdoux S, Rajkovic A, De Sutter S, Vermeulen A, Spilimbergo S, Zambon A, Hofland G, Uyttendaele M, Devlieghere F (2018) Inactivation of Salmonella, Listeria monocytogenes and Escherichia coli O157:H7 inoculated on coriander by freeze-drying and supercritical CO2 drying. Innovative Food Sci Emerging Technol 47:180–186

    Article  CAS  Google Scholar 

  23. Chemat F, Rombaut N, Meullemiestre A, Turk M, Perino S, Fabiano-Tixier AS, Abert-Vian M (2017) Review of green food processing techniques. Preservation, transformation, and extraction. Innovative Food Sci Emerging Technol 41:357–377

    Article  CAS  Google Scholar 

  24. Clarke CJ, Tu WC, Levers O, Brohl A, Hallett JP (2018) Green and sustainable solvents in chemical processes. Chem Rev 118(2):747–800

    Article  CAS  PubMed  Google Scholar 

  25. Belwal T, Ezzat SM, Rastrelli L, Bhatt ID, Daglia M, Baldi A, Devkota HP, Orhan IE, Patra JK, Das G, Anandharamakrishnan C, Gomez-Gomez L, Nabavi SF, Nabavi SM, Atanasov AG (2018) A critical analysis of extraction techniques used for botanicals: Trends, priorities, industrial uses and optimization strategies. Trac-Trends Anal Chem 100:82–102

    Article  CAS  Google Scholar 

  26. Chemat F, Vian MA, Cravotto G (2012) Green extraction of natural products: Concept and principles. Int J Mol Sci 13(7):8615–8627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. de Melo MMR, Silvestre AJD, Silva CM (2014) Supercritical fluid extraction of vegetable matrices: Applications, trends and future perspectives of a convincing green technology. J Supercrit Fluids 92:115–176

    Article  CAS  Google Scholar 

  28. Peng WL, Mohd-Nasir H, Setapar SHM, Ahmad A, Lokhat D (2020) Optimization of process variables using response surface methodology for tocopherol extraction from Roselle seed oil by supercritical carbon dioxide. Ind Crops Prod 143

  29. Sharif KM, Rahman MM, Azmir J, Mohamed A, Jahurul MHA, Sahena F, Zaidul ISM (2014) Experimental design of supercritical fluid extraction—a review. J Food Eng 124:105–116

    Article  CAS  Google Scholar 

  30. Brunner G (2005) Supercritical fluids: Technology and application to food processing. J Food Eng 67(1–2):21–33

    Article  Google Scholar 

  31. Yousefi M, Rahimi-Nasrabadi M, Pourmortazavi SM, Wysokowski M, Jesionowski T, Ehrlich H, Mirsadeghi S (2019) Supercritical fluid extraction of essential oils. Trac-Trends Anal Chem 118:182–193

    Article  CAS  Google Scholar 

  32. Tongnuanchan P, Benjakul S (2014) Essential oils: Extraction, bioactivities, and their uses for food preservation. J Food Sci 79(7):R1231–R1249

    Article  CAS  PubMed  Google Scholar 

  33. El Asbahani A, Miladi K, Badri W, Sala M, Addi EHA, Casabianca H, El Mousadik A, Hartmann D, Jilale A, Renaud FNR, Elaissari A (2015) Essential oils: From extraction to encapsulation. Int J Pharm 483(1–2):220–243

    Article  CAS  PubMed  Google Scholar 

  34. de Oliveira MS, da Cruz JN, Silva SG, da Costa WA, de Sousa SHB, Bezerra FWF, Teixeira E, da Silva NJN, de Aguiar Andrade EH, Neto AMdJC (2019) Phytochemical profile, antioxidant activity, inhibition of acetylcholinesterase and interaction mechanism of the major components of the Piper divaricatum essential oil obtained by supercritical CO2. J Supercrit Fluids 145:74–84

    Article  CAS  Google Scholar 

  35. Majdoub S, El Mokni R, Muradalievich AA, Piras A, Porcedda S, Hammami S (2019) Effect of pressure variation on the efficiency of supercritical fluid extraction of wild carrot (Daucus carota subsp. maritimus) extracts. J Chromatogr B 1125:121713

  36. Sodeifian G, Sajadian SA (2017) Investigation of essential oil extraction and antioxidant activity of Echinophora platyloba DC. using supercritical carbon dioxide. J Supercrit Fluids 121:52–62

    Article  CAS  Google Scholar 

  37. Fornari T, Vicente G, Vázquez E, García-Risco MR, Reglero G (2012) Isolation of essential oil from different plants and herbs by supercritical fluid extraction. J Chromatogr A 1250:34–48

    Article  CAS  PubMed  Google Scholar 

  38. Pourmortazavi SM, Hajimirsadeghi SS (2007) Supercritical fluid extraction in plant essential and volatile oil analysis. J Chromatogr A 1163(1–2):2–24

    Article  CAS  PubMed  Google Scholar 

  39. Gwee YL, Yusup S, Tan RR, Yiin CL (2020) Techno-economic and life-cycle assessment of volatile oil extracted from Aquilaria sinensis using supercritical carbon dioxide. J CO2 Util 38:158–167

  40. Moncada J, Tamayo JA, Cardona CA (2016) Techno-economic and environmental assessment of essential oil extraction from Oregano (Origanum vulgare) and Rosemary (Rosmarinus officinalis) in Colombia. J Cleaner Prod 112:172–181

    Article  Google Scholar 

  41. Lima M, de Sousa CP, Fernandez-Prada C, Harel J, Dubreuil J, de Souza E (2019) A review of the current evidence of fruit phenolic compounds as potential antimicrobials against pathogenic bacteria. Microb Pathog 130:259–270

    Article  CAS  PubMed  Google Scholar 

  42. Salehi B, Vlaisavljevic S, Adetunji CO, Adetunji JB, Kregiel D, Antolak H, Pawlikowska E, Uprety Y, Mileski KS, Devkota HP (2019) Plants of the genus Vitis: Phenolic compounds, anticancer properties and clinical relevance. Trends Food Sci Technol 91:362–379

    Article  CAS  Google Scholar 

  43. Wu G, Chang C, Hong C, Zhang H, Huang J, ** Q, Wang X (2019) Phenolic compounds as stabilizers of oils and antioxidative mechanisms under frying conditions: A comprehensive review. Trends Food Sci Technol 92:33–45

    Article  CAS  Google Scholar 

  44. Arshadi M, Attard TM, Lukasik RM, Brncic M, da Costa Lopes AM, Finell M, Geladi P, Gerschenson LN, Gogus F, Herrero M (2016) Pre-treatment and extraction techniques for recovery of added value compounds from wastes throughout the agri-food chain. Green Chem 18(23):6160–6204

    Article  CAS  Google Scholar 

  45. Sato T, Ikeya Y, Adachi S, Yagasaki K, Nihei K, Itoh N (2019) Extraction of strawberry leaves with supercritical carbon dioxide and entrainers: Antioxidant capacity, total phenolic content, and inhibitory effect on uric acid production of the extract. Food Bioprod Process 117:160–169

    Article  CAS  Google Scholar 

  46. Valadez-Carmona L, Ortiz-Moreno A, Ceballos-Reyes G, Mendiola JA, Ibanez E (2018) Valorization of cacao pod husk through supercritical fluid extraction of phenolic compounds. J Supercrit Fluids 131:99–105

    Article  CAS  Google Scholar 

  47. Castro-Vargas HI, Baumann W, Ferreira SRS, Parada-Alfonso F (2019) Valorization of papaya (Carica papaya L.) agroindustrial waste through the recovery of phenolic antioxidants by supercritical fluid extraction. J Food Sci Technol 56(6):3055–3066

  48. Ferrentino G, Morozova K, Mosibo OK, Ramezani M, Scampicchio M (2018) Biorecovery of antioxidants from apple pomace by supercritical fluid extraction. J Cleaner Prod 186:253–261

    Article  CAS  Google Scholar 

  49. Goyeneche R, Di Scala K, Ramirez CL, Fanovich MA (2020) Recovery of bioactive compounds from beetroot leaves by supercritical CO2 extraction as a promising bioresource. J Supercrit Fluids 155

  50. Pimentel-Moral S, Borras-Linares I, Lozano-Sanchez J, Arraez-Roman D, Martinez-Ferez A, Segura-Carretero A (2019) Supercritical CO2 extraction of bioactive compounds from Hibiscus sabdariffa. J Supercrit Fluids 147:213–221

    Article  CAS  Google Scholar 

  51. Rosello-Soto E, Barba FJ, Lorenzo JM, Munekata PES, Gomez B, Molto JC (2019) Phenolic profile of oils obtained from “horchata” by-products assisted by supercritical-CO2 and its relationship with antioxidant and lipid oxidation parameters: Triple TOF-LC-MS-MS characterization. Food Chem 274:865–871

    Article  CAS  PubMed  Google Scholar 

  52. Sahena F, Zaidul ISM, **ap S, Karim AA, Abbas KA, Norulaini NAN, Omar AKM (2009) Application of supercritical CO2 in lipid extraction-a review. J Food Eng 95(2):240–253

    Article  CAS  Google Scholar 

  53. Sookwong P, Mahatheeranont S (2017) Supercritical CO2 extraction of rice bran oil-the technology, manufacture, and applications. J Oleo Sci 66(6):557–564

    Article  CAS  PubMed  Google Scholar 

  54. Rai A, Mohanty B, Bhargava R (2016) Supercritical extraction of sunflower oil: A central composite design for extraction variables. Food Chem 192:647–659

    Article  CAS  PubMed  Google Scholar 

  55. del Valle JM (2015) Extraction of natural compounds using supercritical CO2: Going from the laboratory to the industrial application. J Supercrit Fluids 96:180–199

    Article  CAS  Google Scholar 

  56. Ganesan K, Sukalingam K, Xu B (2018) Impact of consumption and cooking manners of vegetable oils on cardiovascular diseases-a critical review. Trends Food Sci Technol 71:132–154

    Article  CAS  Google Scholar 

  57. Timilsena YP, Wang B, Adhikari R, Adhikari B (2017) Advances in microencapsulation of polyunsaturated fatty acids (PUFAs)-rich plant oils using complex coacervation: A review. Food Hydrocolloids 69:369–381

    Article  CAS  Google Scholar 

  58. Ivanovs K, Blumberga D (2017) Extraction of fish oil using green extraction methods: A short review. Energy Procedia 128:477–483

    Article  CAS  Google Scholar 

  59. Ferdosh S, Sarker ZI, Norulaini N, Oliveira A, Yunus K, Chowdury AJ, Akanda J, Omar M (2015) Quality of tuna fish oils extracted from processing the by-products of three species of neritic tuna using supercritical carbon dioxide. J Food Process Preserv 39(4):432–441

    Article  CAS  Google Scholar 

  60. Melgosa R, Sanz MT, Benito-Roman O, Illera AE, Beltran S (2019b) Supercritical CO2 assisted synthesis and concentration of monoacylglycerides rich in omega-3 polyunsaturated fatty acids. J CO2 Util 31:65–74

  61. Soto G, Hegel P, Pereda S (2014) Supercritical production and fractionation of fatty acid esters and acylglycerols. J Supercrit Fluids 93:74–81

    Article  CAS  Google Scholar 

  62. Zaghdoudi K, Framboisier X, Frochot C, Vanderesse R, Barth D, Kalthoum-Cherif J, Blanchard F, Guiavarc’h Y (2016) Response surface methodology applied to supercritical fluid extraction (SFE) of carotenoids from Persimmon (Diospyros kaki L.). Food Chem 208:209–219

    Article  CAS  PubMed  Google Scholar 

  63. Adadi P, Barakova NV, Krivoshapkina EF (2018) Selected methods of extracting carotenoids, characterization, and health concerns: A review. J Agric Food Chem 66(24):5925–5947

    Article  CAS  PubMed  Google Scholar 

  64. Saini RK, Keum Y-S (2018) Carotenoid extraction methods: a review of recent developments. Food Chem 240:90–103

    Article  CAS  PubMed  Google Scholar 

  65. Derrien M, Aghabararnejad M, Gosselin A, Desjardins Y, Angers P, Boumghar Y (2018) Optimization of supercritical carbon dioxide extraction of lutein and chlorophyll from spinach by-products using response surface methodology. LWT-Food Sci Technol 93:79–87

    Article  CAS  Google Scholar 

  66. Lima MdA, Kestekoglou I, Charalampopoulos D, Chatzifragkou A (2019) Supercritical fluid extraction of carotenoids from vegetable waste matrices. Molecules 24(3):466

    Article  CAS  Google Scholar 

  67. Tirado DF, Calvo L (2019) The Hansen theory to choose the best cosolvent for supercritical CO2 extraction of beta-carotene from Dunaliella salina. J Supercrit Fluids 145:211–218

    Article  CAS  Google Scholar 

  68. Adejoke HT, Louis H, Amusan OO, Apebende G (2019) A review on classes, extraction, purification and pharmaceutical importance of plants alkaloid. J Med Chem Sci 2(4):130–139

    CAS  Google Scholar 

  69. Klein LC, Vander Heyden Y, Henriques AT (2016) Enlarging the bottleneck in the analysis of alkaloids: A review on sample preparation in herbal matrices. Trac-Trends Anal Chem 80:66–82

    Article  CAS  Google Scholar 

  70. Zabot GL (2020) Decaffeination using supercritical carbon dioxide, in: Inamuddin, Asiri AM, Isloor AM (Eds.), Green sustainable process for chemical and environmental engineering and science: supercritical carbon dioxide as green solvent

  71. De Marco I, Riemma S, Iannone R (2018) Life cycle assessment of supercritical CO2 extraction of caffeine from coffee beans. J Supercrit Fluids 133:393–400

    Article  CAS  Google Scholar 

  72. Bermejo DV, Ibanez E, Reglero G, Fornari T (2015) Effect of cosolvents (ethyl lactate, ethyl acetate and ethanol) on the supercritical CO2 extraction of caffeine from green tea. J Supercrit Fluids 107:507–512

    Article  CAS  Google Scholar 

  73. Ganan NA, Dias AMA, Bombaldi F, Zygadlo JA, Brignole EA, de Sousa HC, Braga MEM (2016) Alkaloids from Chelidonium majus L.: Fractionated supercritical CO2 extraction with co-solvents. Sep Purif Technol 165:199–207

    Article  CAS  Google Scholar 

  74. Moon J, Getachew AT, Haque AT, Saravana PS, Cho Y, Nkurunziza D, Chun B (2019) Physicochemical characterization and deodorant activity of essential oil recovered from Asiasarum heterotropoides using supercritical carbon dioxide and organic solvents. J Ind Eng Chem 69:217–224

    Article  CAS  Google Scholar 

  75. Sicari V, Poiana M (2017) Recovery of bergamot seed oil by supercritical carbon dioxide extraction and comparison with traditional solvent extraction. J Food Process Eng 40(1):e12341

    Article  CAS  Google Scholar 

  76. Wu H, Li JL, Jia Y, **ao ZH, Li PW, **e YX, Zhang AH, Liu RK, Ren ZW, Zhao MR, Zeng CZ, Li CZ (2019) Essential oil extracted from cymbopogon citronella leaves by supercritical carbon dioxide: Antioxidant and antimicrobial activities. J Anal Methods Chem 2019:10

    Article  CAS  Google Scholar 

  77. Sodeifian G, Sajadian SA, Ardestani NS (2016) Extraction of Dracocephalum kotschyi Boiss using supercritical carbon dioxide: Experimental and optimization. J Supercrit Fluids 107:137–144

    Article  CAS  Google Scholar 

  78. Ndayishimiye J, Chun BS (2018) Formation, characterization and release behavior of citrus oil-polymer microparticles using particles from gas saturated solutions (PGSS) process. J Ind Eng Chem 63:201–207

    Article  CAS  Google Scholar 

  79. Tyskiewicz K, Konkol M, Roj E (2019) Supercritical carbon dioxide (scCO(2)) extraction of phenolic compounds from Lavender (Lavandula angustifolia) flowers: a Box-Behnken experimental optimization. Molecules 24(18)

  80. Sodeifian G, Sajadian SA, Honarvar B (2018) Mathematical modelling for extraction of oil from Dracocephalum kotschyi seeds in supercritical carbon dioxide. Nat Prod Res 32(7):795–803

    Article  CAS  PubMed  Google Scholar 

  81. Bilgic-Keles S, Sahin-Yesilcubuk N, Barla-Demirkoz A, Karakas M (2019) Response surface optimization and modelling for supercritical carbon dioxide extraction of Echium vulgare seed oil. J Supercrit Fluids 143:365–369

    Article  CAS  Google Scholar 

  82. Tai HP, Brunner G (2019) Extraction of Oil and Minor Compounds from Oil Palm Fruit with Supercritical Carbon Dioxide. Processes 7(2)

  83. Wejnerowska G, Ciaciuch A (2018) Optimisation of oil extraction from quinoa seeds with supercritical carbon dioxide with co-solvents. Czech J Food Sci 36(1):81–87

    Article  CAS  Google Scholar 

  84. Mehariya S, Iovine A, Di Sanzo G, Larocca V, Martino M, Leone GP, Casella P, Karatza D, Marino T, Musmarra D, Molino A (2019) Supercritical fluid extraction of lutein from Scenedesmus almeriensis. Molecules 24(7)

  85. Ilgaz S, Sat IG, Polat A (2018) Effects of processing parameters on the caffeine extraction yield during decaffeination of black tea using pilot-scale supercritical carbon dioxide extraction technique. J Food Sci Technol 55(4):1407–1415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ruan X, Cui W-x, Yang L, Li Z-h, Liu B, Wang Q (2017) Extraction of total alkaloids, peimine and peiminine from the flower of Fritillaria thunbergii Miq using supercritical carbon dioxide. J CO2 Util 18:283–293

  87. Dutta S, Bhattacharjee PJMTP (2016) Modeling of supercritical carbon dioxide extraction of piperine from Malabar black pepper. Mater Today: Proc 3(10):3238–3252

    Google Scholar 

  88. Carrara VS, Filho LC, Garcia VAS, Faioes VS, Cunha EF, Torres-Santos EC, Cortez DAG (2017) Supercritical fluid extraction of pyrrolidine alkaloid from leaves of Piper amalago L. J Evidence-Based Complementary Altern Med

  89. Nagavekar N, Singhal RS (2018) Enhanced extraction of oleoresin from Piper nigrum by supercritical carbon dioxide using ethanol as a co-solvent and its bioactivity profile. J Food Process Eng 41(1):e12670

    Article  CAS  Google Scholar 

  90. Dordevic V, Balanc B, Belscak-Cvitanovic A, Levic S, Trifkovic K, Kalusevic A, Kostic I, Komes D, Bugarski B, Nedovic V (2015) Trends in encapsulation technologies for delivery of food bioactive compounds. Food Eng Rev 7(4):452–490

    Article  CAS  Google Scholar 

  91. Munin A, Edwards-Levy F (2011) Encapsulation of natural polyphenolic compounds; a review. Pharmaceutics 3(4):793–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Silva EK, Meireles MAA (2014) Encapsulation of food compounds using supercritical technologies: Applications of supercritical carbon dioxide as an antisolvent. Food and Public Health 4(5):247–258

    Article  Google Scholar 

  93. Temelli F (2018) Perspectives on the use of supercritical particle formation technologies for food ingredients. J Supercrit Fluids 134:244–251

    Article  CAS  Google Scholar 

  94. Sihvonen M, Jarvenpaa E, Hietaniemi V, Huopalahti R (1999) Advances in supercritical carbon dioxide technologies. Trends Food Sci Technol 10(6–7):217–222

    Article  CAS  Google Scholar 

  95. Martello RH, Gallon C, Souza MA, Calisto JFF, Aguiar GPS, Albeny-Simoes D, Oliveira JV, Dal Magro J (2019) Micronization of thymol by RESS and its larvicidal activity against Aedes aegypti (Diptera, Culicidae). Ind Crops Prod 139

  96. Soh SH, Lee LY (2019) Microencapsulation and Nanoencapsulation Using Supercritical Fluid (SCF) Techniques. Pharmaceutics 11(1)

  97. Wang BC, Su CS (2020) Solid solubility measurement of ipriflavone in supercritical carbon dioxide and microparticle production through the rapid expansion of supercritical solutions process. J CO2 Util 37:285–294

  98. Jung J, Perrut M (2001) Particle design using supercritical fluids: Literature and patent survey. J Supercrit Fluids 20(3):179–219

    Article  CAS  Google Scholar 

  99. Gomes MT, Santana ÁL, Santos DT, Meireles MA (2019) Trends on the rapid expansion of supercritical solutions process applied to food and non-food industries. Recent Pat Food, Nutr Agric 10(2):82–92

    Article  CAS  Google Scholar 

  100. Weidner E (2009) High pressure micronization for food applications. J Supercrit Fluids 47(3):556–565

    Article  CAS  Google Scholar 

  101. Momenkiaei F, Raofie F (2018) Preparation of silybum marianum seeds extract nanoparticles by supercritical solution expansion. J Supercrit Fluids 138:46–55

    Article  CAS  Google Scholar 

  102. Momenkiaei F, Raofie F (2019) Preparation of Curcuma Longa L. Extract Nanoparticles Using Supercritical Solution Expansion. J Pharm Sci 108(4):1581–1589

  103. Tsai WC, Rizvi SSH (2016) Liposomal microencapsulation using the conventional methods and novel supercritical fluid processes. Trends Food Sci Technol 55:61–71

    Article  CAS  Google Scholar 

  104. Tsai WC, Rizvi SSH (2017a) Microencapsulation and characterization of liposomal vesicles using a supercritical fluid process coupled with vacuum-driven cargo loading. Food Res Int 96:94–102

    Article  CAS  PubMed  Google Scholar 

  105. Tsai WC, Rizvi SSH (2017b) Simultaneous microencapsulation of hydrophilic and lipophilic bioactives in liposomes produced by an ecofriendly supercritical fluid process. Food Res Int 99:256–262

    Article  CAS  PubMed  Google Scholar 

  106. Rojas A, Torres A, Galotto MJ, Guarda A, Julio R (2020) Supercritical impregnation for food applications: A review of the effect of the operational variables on the active compound loading. Crit Rev Food Sci Nutr 60(8):1290–1301

    Article  CAS  PubMed  Google Scholar 

  107. Milovanovic S, Hollermann G, Errenst C, Pajnik J, Frerich S, Kroll S, Rezwan K, Ivanovic J (2018) Supercritical CO2 impregnation of PLA/PCL films with natural substances for bacterial growth control in food packaging. Food Res Int 107:486–495

    Article  CAS  PubMed  Google Scholar 

  108. Sanchez-Sanchez J, Fernandez-Ponce MT, Casas L, Mantell C, de la Ossa EJM (2017) Impregnation of mango leaf extract into a polyester textile using supercritical carbon dioxide. J Supercrit Fluids 128:208–217

    Article  CAS  Google Scholar 

  109. Bastante CC, Cardoso LC, Fernandez-Ponce MT, Serrano CM, de la Ossa EJM (2019) Supercritical impregnation of olive leaf extract to obtain bioactive films effective in cherry tomato preservation. Food packaging shelf 21

  110. Pantić M, Knez Ž, Novak Z (2016) Supercritical impregnation as a feasible technique for entrapment of fat-soluble vitamins into alginate aerogels. J Non-Cryst Solids 432:519–526

    Article  CAS  Google Scholar 

  111. Alvarado N, Romero J, Torres A, de Dicastillo CL, Rojas A, Galotto MJ, Guarda A (2018) Supercritical impregnation of thymol in poly(lactic acid) filled with electrospun poly(vinyl alcohol)-cellulose nanocrystals nanofibers: Development an active food packaging material. J Food Eng 217:1–10

    Article  CAS  Google Scholar 

  112. Fahim TK, Zaidul ISM, Abu Bakar MR, Salim UM, Awang MB, Sahena F, Jalal KCA, Sharif KM, Sohrab MH (2014) Particle formation and micronization using non-conventional techniques-review. Chem Eng Process 86:47–52

    Article  CAS  Google Scholar 

  113. Knez Z, Hrncic MK, Skerget M (2015) Particle formation and product formulation using supercritical fluids, in: Prausnitz JM (Ed.), Annual Review of Chemical and Biomolecular Engineering, Vol 6. Annual Reviews, Palo Alto

  114. Gil-Ramirez A, Rodriguez-Meizoso I (2019) Purification of natural products by selective precipitation using supercritical/gas antisolvent techniques (SAS/GAS). Sep Purif Rev:1–21

  115. Janiszewska-Turak E (2017) Carotenoids microencapsulation by spray drying method and supercritical micronization. Food Res Int 99:891–901

    Article  CAS  PubMed  Google Scholar 

  116. Montes A, Hanke F, Williamson D, Guaman-Balcazar MC, Valor D, Pereyra C, Teipel U, de la Ossa EM (2019) Precipitation of powerful antioxidant nanoparticles from orange leaves by means of supercritical CO2. J CO2 Util 31:235–243

  117. Jung J, Clavier J-Y, Perrut M (2003) Gram to kilogram scale-up of supercritical anti-solvent process, Proceedings of the 6th International Symposium on Supercritical Fluids, pp. 1683–1688

  118. Prieto C, Calvo L (2017) The encapsulation of low viscosity omega-3 rich fish oil in polycaprolactone by supercritical fluid extraction of emulsions. J Supercrit Fluids 128:227–234

    Article  CAS  Google Scholar 

  119. Reis P, Mezzomo N, Aguiar GPS, Senna E, Hense H, Ferreira SRS (2019) Ultrasound-assisted emulsion of laurel leaves essential oil (Laurus nobilis L.) encapsulated by SFEE. J Supercrit Fluids 147:284–292

    Article  CAS  Google Scholar 

  120. Levai G, Albarelli JQ, Santos DT, Meireles MAA, Martin A, Rodriguez-Rojo S, Cocero MJ (2017) Quercetin loaded particles production by means of supercritical fluid extraction of emulsions: Process scale-upstudy and thermo-economic evaluation. Food Bioprod Process 103:27–38

    Article  CAS  Google Scholar 

  121. Soukoulis C, Bohn T (2018) A comprehensive overview on the micro- and nano-technological encapsulation advances for enhancing the chemical stability and bioavailability of carotenoids. Crit Rev Food Sci Nutr 58(1):1–36

    Article  CAS  PubMed  Google Scholar 

  122. Ndayishimiye J, Ferrentino G, Nabil H, Scampicchio M (2020) Encapsulation of oils recovered from brewer’s spent grain by particles from gas saturated solutions technique. Food Bioprocess Technol 13(2):256–264

    Article  CAS  Google Scholar 

  123. Getachew AT, Chun BS (2016) Optimization of coffee oil flavor encapsulation using response surface methodology. LWT-Food Sci Technol 70:126–134

    Article  CAS  Google Scholar 

  124. Haq M, Chun BS (2018) Microencapsulation of omega-3 polyunsaturated fatty acids and astaxanthin-rich salmon oil using particles from gas saturated solutions (PGSS) process. LWT-Food Sci Technol 92:523–530

    Article  CAS  Google Scholar 

  125. Goncalves VSS, Poejo J, Matias AA, Rodriguez-Rojo S, Cocero MJ, Duarte CMM (2016) Using different natural origin carriers for development of epigallocatechin gallate (EGCG) solid formulations with improved antioxidant activity by PGSS-drying. RSC Adv 6(72):67599–67609

    Article  CAS  Google Scholar 

  126. Melgosa R, Benito-Roman O, Sanz MT, de Paz E, Beltran S (2019) Omega-3 encapsulation by PGSS-drying and conventional drying methods. Particle characterization and oxidative stability. Food Chem 270:138–148

    Article  CAS  PubMed  Google Scholar 

  127. Levai G, Martin A, Moro A, Matias AA, Goncalves VSS, Bronze MR, Duarte CMM, Rodriguez-Rojo S, Cocero MJ (2017) Production of encapsulated quercetin particles using supercritical fluid technologies. Powder Technol 317:142–153

    Article  CAS  Google Scholar 

  128. Chauvet M, Sauceau M, Fages J (2017) Extrusion assisted by supercritical CO2: A review on its application to biopolymers. J Supercrit Fluids 120:408–420

    Article  CAS  Google Scholar 

  129. Sauceau M, Fages J, Common A, Nikitine C, Rodier E (2011) New challenges in polymer foaming: A review of extrusion processes assisted by supercritical carbon dioxide. Prog Polym Sci 36(6):749–766

    Article  CAS  Google Scholar 

  130. Rizvi SS, Mulvaney S (1992) Extrusion processing with supercritical fluids. Google Patents

  131. Rizvi S, Mulvaney S, Sokhey A (1995) The combined application of supercritical fluid and extrusion technology. Trends Food Sci Technol 6(7):232–240

    Article  CAS  Google Scholar 

  132. Lv Y, Glahn RP, Hebb RL, Rizvi SSH (2018) Physico-chemical properties, phytochemicals and DPPH radical scavenging activity of supercritical fluid extruded lentils. LWT-Food Sci Technol 89:315–321

    Article  CAS  Google Scholar 

  133. Alavi S, Gogoi B, Khan M, Bowman B, Rizvi S (1999) Structural properties of protein-stabilized starch-based supercritical fluid extrudates. Food Res Int 32(2):107–118

    Article  CAS  Google Scholar 

  134. Afizah MN, Rizvi SSH (2014) Functional properties of whey protein concentrate texturized at acidic pH: Effect of extrusion temperature. LWT-Food Sci Technol 57(1):290–298

    Article  CAS  Google Scholar 

  135. Manoi K, Rizvi SSH (2008) Rheological characterizations of texturized whey protein concentrate-based powders produced by reactive supercritical. Food Res Int 41(8):786–796

    Article  CAS  Google Scholar 

  136. Bashir S, Sharif MK, Butt MS, Rizvi SS, Paraman I, Ejaz R (2017) Preparation of micronutrients fortified Spirulina supplemented Rice-soy crisps processed through novel supercritical fluid extrusion. J Food Process Preserv 41(3):e12986

    Article  CAS  Google Scholar 

  137. Sharif MK, Rizvi SSH, Paraman I (2014) Characterization of supercritical fluid extrusion processed rice-soy crisps fortified with micronutrients and soy protein. LWT-Food Sci Technol 56(2):414–420

    Article  CAS  Google Scholar 

  138. Sun VZ, Paraman I, Rizvi SSH (2015) Supercritical fluid extrusion of protein puff made with fruit pomace and liquid whey. Food Bioprocess Technol 8(8):1707–1715

    Article  CAS  Google Scholar 

  139. Liu H, Hebb RL, Putri N, Rizvi SS (2018) Physical properties of supercritical fluid extrusion products composed of milk protein concentrate with carbohydrates. Int J Food Sci Technol 53(3):847–856

    Article  CAS  Google Scholar 

  140. Yoon AK, Rizvi SS (2020) Functional, textural, and sensory properties of milk protein concentrate-based supercritical fluid extrudates made with acid whey. Int J Food Prop 23(1):708–721

    Article  CAS  Google Scholar 

  141. Ivanovic J, Milovanovic S, Zizovic I (2016) Utilization of supercritical CO2 as a processing aid in setting functionality of starch-based materials. Starch-Starke 68(9–10):821–833

    Article  CAS  Google Scholar 

  142. Montes A, Merino R, De los Santos DM, Pereyra C, de la Ossa EJM (2017) Micronization of vanillin by rapid expansion of supercritical solutions process. J CO2 Util 21:169–176

  143. Jiao Z, Wang XD, Han S, Zha XJ, **a JX (2019) Preparation of vitamin C liposomes by rapid expansion of supercritical solution process: Experiments and optimization. J Drug Delivery Sci Technol 51:1–6

    Article  CAS  Google Scholar 

  144. Karimi M, Raofie F (2019) Micronization of vincristine extracted from Catharanthus roseus by expansion of supercritical fluid solution. J Supercrit Fluids 146:172–179

    Article  CAS  Google Scholar 

  145. Bastante CC, Cardoso LC, Serrano CM, de la Ossa EM (2017) Supercritical impregnation of food packaging films to provide antioxidant properties. J Supercrit Fluids 128:200–207

    Article  CAS  Google Scholar 

  146. Rojas A, Torres A, Añazco A, Villegas C, Galotto MJ, Guarda A, Romero J (2018) Effect of pressure and time on scCO2-assisted incorporation of thymol into LDPE-based nanocomposites for active food packaging. J CO2 Util 26:434–444

  147. Quintana SE, Hernandez DM, Villanueva-Bermejo D, Garcia-Risco MR, Fornari T (2020) Fractionation and precipitation of licorice (Glycyrrhiza glabra L.) phytochemicals by supercritical antisolvent (SAS) technique. LWT-Food Sci Technol 126

  148. Machado APD, Rezende CA, Rodrigues RA, Barbero GF, Rosa P, Martinez J (2018) Encapsulation of anthocyanin-rich extract from blackberry residues by spray-drying, freeze-drying and supercritical antisolvent. Powder Technol 340:553–562

    Article  CAS  Google Scholar 

  149. Guaman-Balcazar MC, Montes A, Pereyra C, de la Ossa EM (2019) Production of submicron particles of the antioxidants of mango leaves/PVP by supercritical antisolvent extraction process. J Supercrit Fluids 143:294–304

    Article  CAS  Google Scholar 

  150. Rosa M, Alvarez VH, Albarelli JQ, Santos DT, Meireles MAA, Saldana MDA (2019) Supercritical anti-solvent process as an alternative technology for vitamin complex encapsulation using zein as wall material: Technical-economic evaluation. J Supercrit Fluids 159

  151. Kaga K, Honda M, Adachi T, Honjo M, Wahyudiono KH, Goto M (2018) Nanoparticle formation of PVP/astaxanthin inclusion complex by solution enhanced dispersion by supercritical fluids (SEDS): Effect of PVP and astaxanthin Z-isomer content. J Supercrit Fluids 136:44–51

    Article  CAS  Google Scholar 

  152. Lee WJ, Tan CP, Sulaiman R, Hee YY, Chong GH (2020) Storage stability and degradation kinetics of bioactive compounds in red palm oil microcapsules produced with solution-enhanced dispersion by supercritical carbon dioxide: A comparison with the spray-drying method. Food Chem 304

  153. Mendonca FMR, Polloni AE, Junges A, da Silva RS, Rubirad AF, Borges GR, Dariva C, Franceschi E (2019) Encapsulation of neem (Azadirachta indica) seed oil in poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by SFEE technique. J Supercrit Fluids 152

  154. Cruz PN, Reis P, Ferreira SRS, Masson ML, Corazza ML (2020) Encapsulation of yacon (Smallanthus sonchifolius) leaf extract by supercritical fluid extraction of emulsions. J Supercrit Fluids 160

  155. Ndayishimiye J, Lim DJ, Chun BS (2018) Antioxidant and antimicrobial activity of oils obtained from a mixture of citrus by-products using a modified supercritical carbon dioxide. J Ind Eng Chem 57:339–348

    Article  CAS  Google Scholar 

  156. Ferrentino G, Spilimbergo S (2011) High pressure carbon dioxide pasteurization of solid foods: Current knowledge and future outlooks. Trends Food Sci Technol 22(8):427–441

    Article  CAS  Google Scholar 

  157. Perrut M (2012) Sterilization and virus inactivation by supercritical fluids (a review). J Supercrit Fluids 66:359–371

    Article  CAS  Google Scholar 

  158. Soares GC, Learmonth DA, Vallejo MC, Davila SP, González P, Sousa RA, Oliveira AL (2019) Supercritical CO2 technology: The next standard sterilization technique? Mater Sci Eng: C 99:520–540

    Article  CAS  Google Scholar 

  159. Fraser D (1951) Bursting bacteria by release of gas pressure. Nature 167(4236):33–34

    Article  CAS  PubMed  Google Scholar 

  160. Xu FY, Feng FM, Sui X, Lin H, Han YG (2017) Inactivation mechanism of Vibrio parahaemolyticus via supercritical carbon dioxide treatment. Food Res Int 100:282–288

    Article  CAS  PubMed  Google Scholar 

  161. Chen YY, Temelli F, Ganzle MG (2017) Mechanisms of Inactivation of Dry Escherichia coli by High-Pressure Carbon Dioxide. Appl Environ Microbiol 83(10)

  162. Silva EK, Alvarenga VO, Bargas MA, Sant’Ana AS, Meireles MAA (2018) Non-thermal microbial inactivation by using supercritical carbon dioxide: Synergic effect of process parameters. J Supercrit Fluids 139:97–104

    Article  CAS  Google Scholar 

  163. Fleury C, Savoire R, Harscoat-Schiavo C, Hadj-Sassi A, Subra-Patemault P (2018) Optimization of supercritical CO2 process to pasteurize dietary supplement: Influencing factors and CO2 transfer approach. J Supercrit Fluids 141:240–251

    Article  CAS  Google Scholar 

  164. Li H, Xu ZZ, Zhao F, Wang YT, Liao XJ (2016) Synergetic effects of high-pressure carbon dioxide and nisin on the inactivation of Escherichia coli and Staphylococcus aureus. Innovative Food Sci Emerging Technol 33:180–186

    Article  CAS  Google Scholar 

  165. González-Alonso V, Cappelletti M, Bertolini FM, Lomolino G, Zambon A, Spilimbergo S (2019) Microbial inactivation of raw chicken meat by supercritical carbon dioxide treatment alone and in combination with fresh culinary herbs. Poult Sci 99(1):536–545

    Article  PubMed  PubMed Central  Google Scholar 

  166. Sikin AM, Walkling-Ribeiro M, Rizvi SSH (2016) Synergistic effect of supercritical carbon dioxide and peracetic acid on microbial inactivation in shredded Mozzarella-type cheese and its storage stability at ambient temperature. Food Control 70:174–182

    Article  CAS  Google Scholar 

  167. Gomez-Gomez A, Brito-de la Fuente E, Gallegos C, Garcia-Perez JV, Benedito J (2020) Non-thermal pasteurization of lipid emulsions by combined supercritical carbon dioxide and high-power ultrasound treatment. Ultrason Sonochem 67:105138

    Article  CAS  PubMed  Google Scholar 

  168. Paniagua-Martinez I, Mulet A, Garcia-Alvarado MA, Benedito J (2018) Orange juice processing using a continuous flow ultrasound-assisted supercritical CO2 system: Microbiota inactivation and product quality. Innovative Food Sci Emerging Technol 47:362–370

    Article  CAS  Google Scholar 

  169. Setlow P (2016) Spore resistance properties, in: Driks. A, Eichenberger. P (Eds.), The Bacterial Spore. Wiley, Washington, DC

  170. Rao L, Wang YT, Chen F, Liao XJ (2016a) The synergistic effect of high pressure CO2 and nisin on inactivation of Bacillus subtilis spores in aqueous solutions. Front Microbiol 7

  171. Setlow B, Korza G, Blatt KMS, Fey JP, Setlow P (2015) Mechanism of Bacillus subtilis spore inactivation by and resistance to supercritical CO2 plus peracetic acid. J Appl Microbiol 120(1):57–69

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Rao L, Bi XF, Zhao F, Wu JH, Hu XS, Liao XJ (2015) Effect of high-pressure CO2 Processing on bacterial spores. Crit Rev Food Sci Nutr 56(11):1808–1825

    Article  CAS  Google Scholar 

  173. Spilimbergo S, Bertucco A (2003) Non-thermal bacterial inactivation with dense CO2. Biotechnol Bioeng 84(6):627–638

    Article  CAS  PubMed  Google Scholar 

  174. Rao L, Zhao F, Wang YT, Chen F, Hu XS, Liao XJ (2016b) Investigating the Inactivation Mechanism of Bacillus subtilis Spores by High Pressure CO2. Front Microbiol 7

  175. Rao L, Zhao L, Wang YT, Chen F, Hu XS, Setlow P, Liao XJ (2019) Mechanism of inactivation of Bacillus subtilis spores by high pressure CO2 at high temperature. Food Microbiol 82:36–45

    Article  CAS  PubMed  Google Scholar 

  176. Rao L, Wang YT, Chen F, Hu XS, Liao XJ, Zhao L (2020) High pressure CO2 reduces the wet heat resistance of Bacillus subtilis spores by perturbing the inner membrane. Innovative Food Sci Emerging Technol 60:102291

    Article  CAS  Google Scholar 

  177. Benito-Roman O, Sanz MT, Illera AE, Melgosa R, Benito JM, Beltran S (2019) Pectin methylesterase inactivation by high pressure carbon dioxide (HPCD). J Supercrit Fluids 145:111–121

    Article  CAS  Google Scholar 

  178. Briongos H, Illera AE, Sanz MT, Melgosa R, Beltran S, Solaesa AG (2016) Effect of high pressure carbon dioxide processing on pectin methylesterase activity and other orange juice properties. LWT-Food Sci Technol 74:411–419

    Article  CAS  Google Scholar 

  179. Murtaza A, Iqbal A, Zhu LH, Yan L, Xu XY, Pan SY, Hu WF (2019) Effect of high-pressure carbon dioxide on the aggregation and conformational changes of polyphenol oxidase from apple (Malus domestica) juice. Innovative Food Sci Emerging Technol 54:43–50

    Article  CAS  Google Scholar 

  180. Liao H, Zhong K, Hu X, Liao X (2019) Effect of high pressure carbon dioxide on alkaline phosphatase activity and quality characteristics of raw bovine milk. Innovative Food Sci Emerging Technol 52:457–462

    Article  CAS  Google Scholar 

  181. Damar S, Balaban MO (2006) Review of dense phase CO2 technology: Microbial and enzyme inactivation, and effects on food quality. J Food Sci 71(1):R1–R11

    Article  CAS  Google Scholar 

  182. Iqbal A, Murtaza A, Hu W, Ahmad I, Ahmad A, Xu X (2019) Activation and inactivation mechanisms of polyphenol oxidase during thermal and non-thermal methods of food processing. Food Bioprod Process 117:170–182

    Article  CAS  Google Scholar 

  183. Marszalek K, Doesburg P, Starzonek S, Szczepanska J, Wozniak L, Lorenzo JM, Skapska S, Rzoska S, Barba FJ (2019) Comparative effect of supercritical carbon dioxide and high pressure processing on structural changes and activity loss of oxidoreductive enzymes. J CO2 Util 29:46–56.

  184. Illera A, Sanz M, Trigueros E, Beltrán S, Melgosa R (2018) Effect of high pressure carbon dioxide on tomato juice: Inactivation kinetics of pectin methylesterase and polygalacturonase and determination of other quality parameters. J Food Eng 239:64–71

    Article  CAS  Google Scholar 

  185. Zambon A, Michelino F, Bourdoux S, Devlieghere F, Sut S, Dall’Acqua S, Rajkovic A, Spilimbergo S (2018) Microbial inactivation efficiency of supercritical CO2 drying process. Drying Technol 36(16):2016–2021

    Article  CAS  Google Scholar 

  186. Morbiato G, Zambon A, Toffoletto M, Poloniato G, Dall’Acqua S, de Bernard M, Spilimbergo S (2019) Supercritical carbon dioxide combined with high power ultrasound as innovate drying process for chicken breast. J Supercrit Fluids 147:24–32

    Article  CAS  Google Scholar 

  187. Zambon A, Tomic N, Djekic I, Hofland G, Rajkovic A, Spilimbergo S (2020) Supercritical CO2 drying of red bell pepper. Food Bioprocess Technol:11

  188. Zambon A, Bourdoux S, Pantano MF, Pugno NM, Boldrin F, Hofland G, Rajovic AK, Devlieghere F, Spilimbergo S (2019) Supercritical CO2 for the drying and microbial inactivation of apple's slices. Drying Technol:1–9

  189. Busic A, Vojvodic A, Komes D, Akkermans C, Belscak-Cvitanovic A, Stolk M, Hofland G (2014) Comparative evaluation of CO2 drying as an alternative drying technique of basil (Ocimum basilicum L.)-the effect on bioactive and sensory properties. Food Res Int 64:34–42

    Article  CAS  PubMed  Google Scholar 

  190. Braeuer AS, Schuster JJ, Gebrekidan MT, Bahr L, Michelino F, Zambon A, Spilimbergo S (2017) In situ Raman analysis of CO2-assisted drying of fruit-slices. Foods 6(5):37

    Article  PubMed Central  CAS  Google Scholar 

  191. Khalloufi S, Almeida-Rivera C, Bongers P (2010) Supercritical-CO2 drying of foodstuffs in packed beds: experimental validation of a mathematical model and sensitive analysis. J Food Eng 96(1):141–150

    Article  CAS  Google Scholar 

  192. Brown ZK, Fryer PJ, Norton IT, Bakalis S, Bridson RH (2008) Drying of foods using supercritical carbon dioxide-investigations with carrot. Innovative Food Sci Emerging Technol 9(3):280–289

    Article  CAS  Google Scholar 

  193. Djekic I, Tomic N, Bourdoux S, Spilimbergo S, Smigic N, Udovicki B, Hofland G, Devlieghere F, Rajkovic A (2018) Comparison of three types of drying (supercritical CO2, air and freeze) on the quality of dried apple-quality index approach. LWT-Food Sci Technol 94:64–72

    Article  CAS  Google Scholar 

  194. Michelino F, Zambon A, Vizzotto MT, Cozzi S, Spilimbergo S (2018) High power ultrasound combined with supercritical carbon dioxide for the drying and microbial inactivation of coriander. J CO2 Util 24:516–521

  195. Cuppini M, Zeni J, Barbosa J, Franceschi E, Toniazzo G, Cansian RL (2016) Inactivation of Staphylococcus aureus in raw salmon with supercritical CO2 using experimental design. Food Sci Technol 36:8–11

    Article  Google Scholar 

  196. Porebska I, Sokolowska B, Skapska S, Rzoska SJ (2017) Treatment with high hydrostatic pressure and supercritical carbon dioxide to control Alicyclobacillus acidoterrestris spores in apple juice. Food Control 73:24–30

    Article  CAS  Google Scholar 

  197. Marszalek K, Krzyzanowska J, Wozniak L, Skapska S (2016) Kinetic modelling of tissue enzymes inactivation and degradation of pigments and polyphenols in cloudy carrot and celery juices under supercritical carbon dioxide. J Supercrit Fluids 117:26–32

    Article  CAS  Google Scholar 

  198. Ceni G, Silva MF, Valerio C, Cansian RL, Oliveira JV, Rosa CD, Mazutti MA (2016) Continuous inactivation of alkaline phosphatase and Escherichia coli in milk using compressed carbon dioxide as inactivating agent. J CO2 Util 13:24–28

Download references

Acknowledgements

The authors would like to thank the organizer of the International Nonthermal Processing Workshops and Short Courses 2019 in Monterrey, Mexico, especially J. Antonio Torres for his kind invitation. This work was partly supported by the National Key Research & Development Program of China (Grant 2018YFD0400500 and 2018YFD0400503) and “Agricultural Scientific Research Outstanding Talent Training Project” of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **aojun Liao.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Rao, L., Wu, X. et al. Supercritical Carbon Dioxide Applications in Food Processing. Food Eng Rev 13, 570–591 (2021). https://doi.org/10.1007/s12393-020-09270-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12393-020-09270-9

Keywords

Navigation