Log in

Viability assessment with MRI is superior to FDG-PET for viability: Pro

  • Controversies in Nuclear Cardiology
  • Published:
Journal of Nuclear Cardiology Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

References

  1. Rahimtoola SH. The hibernating myocardium. Am Heart J 1989;117:211-21.

    Article  CAS  PubMed  Google Scholar 

  2. Wijns W, Vatner SF, Camici PG. Hibernating myocardium. N Engl J Med 1998;339:173-81.

    Article  CAS  PubMed  Google Scholar 

  3. Weinmann HJ, Laniado M, Mutzel W. Pharmacokinetics of GdDTPA/dimeglumine after intravenous injection into healthy volunteers. Physiol Chem Phys Med NMR 1984;16:167-72.

    CAS  PubMed  Google Scholar 

  4. Schaefer S, Malloy CR, Katz J, Parkey RW, Buja LM, Willerson JT, et al. Gadolinium-DTPA-enhanced nuclear magnetic resonance imaging of reperfused myocardium: Identification of the myocardial bed at risk. J Am Coll Cardiol 1988;12:1064-72.

    CAS  PubMed  Google Scholar 

  5. Judd RM, Lugo-Olivieri CH, Arai M, Kondo T, Croisille P, Lima JA, et al. Physiological basis of myocardial contrast enhancement in fast magnetic resonance images of 2-day-old reperfused canine infarcts. Circulation 1995;92:1902-10.

    CAS  PubMed  Google Scholar 

  6. Kim RJ, Chen EL, Lima JA, Judd RM. Myocardial Gd-DTPA kinetics determine MRI contrast enhancement and reflect the extent and severity of myocardial injury after acute reperfused infarction. Circulation 1996;94:3318-26.

    CAS  PubMed  Google Scholar 

  7. Flacke SJ, Fischer SE, Lorenz CH. Measurement of the gadopentetate dimeglumine partition coefficient in human myocardium in vivo: Normal distribution and elevation in acute and chronic infarction. Radiology 2001;218:703-10.

    CAS  PubMed  Google Scholar 

  8. Rehwald WG, Fieno DS, Chen EL, Kim RJ, Judd RM. Myocardial magnetic resonance imaging contrast agent concentrations after reversible and irreversible ischemic injury. Circulation 2002;105:224-9.

    Article  PubMed  Google Scholar 

  9. Klein C, Nekolla SG, Balbach T, Schnackenburg B, Nagel E, Fleck E, et al. The influence of myocardial blood flow and volume of distribution on late Gd-DTPA kinetics in ischemic heart failure. J Magn Reson Imaging 2004;20:588-93.

    Article  PubMed  Google Scholar 

  10. Klein C, Schmal TR, Nekolla SG, Schnackenburg B, Fleck E, Nagel E. Mechanism of late gadolinium enhancement in patients with acute myocardial infarction. J Cardiovasc Magn Reson 2007;9:653-8.

    Article  PubMed  Google Scholar 

  11. Saraste A, Nekolla S, Schwaiger M. Contrast-enhanced magnetic resonance imaging in the assessment of myocardial infarction and viability. J Nucl Cardiol 2008;15:105-17.

    Article  PubMed  Google Scholar 

  12. Wagner A, Mahrholdt H, Holly TA, Elliott MD, Regenfus M, Parker M, et al. Contrast-enhanced MRI and routine single photon emission computed tomography (SPECT) perfusion imaging for detection of subendocardial myocardial infarcts: An imaging study. Lancet 2003;361:359-60.

    Article  Google Scholar 

  13. Perazella MA. Gadolinium-contrast toxicity in patients with kidney disease: nephrotoxicity and nephrogenic systemic fibrosis. Curr Drug Saf 2008;3:67-75.

    Article  CAS  PubMed  Google Scholar 

  14. Voipio-Pulkki L, Nuutila P, Knuuti J, et al. Heart and skeletal muscle glucose disposal in type 2 diabetic patients as determined by PET. J Nucl Med 1993;34:2064-7.

    CAS  PubMed  Google Scholar 

  15. Ohtake T, Yokoyama I, Watanabe T, et al. Myocardial glucose metabolism in NIDDM patients evaluated by FDG-PET. J Nucl Med 1995;36:456-63.

    CAS  PubMed  Google Scholar 

  16. Vitale GD, deKemp RA, Ruddy TD, Williams K, Beanlands RSB. Myocardial glucose utilization and optimization of 18F-FDG PET imaging in patients with non-insulin-dependent diabetes mellitus, coronary artery disease, and left ventricular dysfunction. J Nucl Med 2001;42:1730-6.

    CAS  PubMed  Google Scholar 

  17. Marshall RC, Tillisch JH, Phelps ME, et al. Identification and differentiation of resting myocardial ischemia and infarction in man with positron emission tomography 18F-labelled fluorodeoxyglucose and N-13 ammonia. Circulation 1983;314:884-8.

    Google Scholar 

  18. Tillisch J, Brunken R, Marshall R, Schwaiger M, Phelps M, Schelbert H. Reversibility of cardiac wall motion abnormalities predicted by positron tomography. N Engl J Med 1986;314:884-8.

    Article  CAS  PubMed  Google Scholar 

  19. Maddahi J, Heinrich S, Brunken R, Di Carli M. Role of thallium-201 and PET imaging in evaluation of myocardial viability and management of patients with CAD and LV dysfunction. J Nucl Med 1994;35:707-15.

    CAS  PubMed  Google Scholar 

  20. Kim RJ, Wu E, Rafael A, Chen EL, Parker MA, Simonetti O, et al. The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med 2000;343:1445-53.

    Article  CAS  PubMed  Google Scholar 

  21. Selvanayagam JB, Kardos A, Francis JM, Wiesmann F, Petersen SE, Taggart DP, et al. Value of delayed-enhancement cardiovascular magnetic resonance imaging in predicting myocardial viability after surgical revascularization. Circulation 2004;110:1535-41.

    Article  PubMed  Google Scholar 

  22. Van Hoe L, Vanderheyden M. Ischemic cardiomyopathy: Value of different MRI techniques for prediction of functional recovery after revascularization. AJR Am J Roentgenol 2004;182:95-100.

    PubMed  Google Scholar 

  23. Kuhl HP, Lipke CS, Krombach GA, Katoh M, Battenberg TF, Nowak B, et al. Assessment of reversible myocardial dysfunction in chronic ischaemic heart disease: Comparison of contrastenhanced cardiovascular magnetic resonance and a combined positron emission tomography-single photon emission computed tomography imaging protocol. Eur Heart J 2006;27:846-53.

    Article  PubMed  Google Scholar 

  24. Lauerma K, Niemi P, Hanninen H, Janatuinen T, Voipio-Pulkki LM, Knuuti J, et al. Multimodality MR imaging assessment of myocardial viability: Combination of first-pass and late contrast enhancement to wall motion dynamics and comparison with FDG PET-initial experience. Radiology 2000;217:729-36.

    CAS  PubMed  Google Scholar 

  25. Eitzman D, Al-Aouar Z, Kanter HL, vom Dahl J, Kirsh M, Deeb GM, et al. Clinical outcome of patients with advanced coronary artery disease after viability studies with positron emission tomography. J Am Coll Cardiol 1992;20:559-65.

    Article  CAS  PubMed  Google Scholar 

  26. Di Carli MF, Davidson M, Little R, Khanna S, Mody FV, Brunken RC, et al. Value of metabolic imaging with positron emission tomography for evaluating prognosis in patients with coronary artery disease and left ventricular dysfunction. Am J Cardiol 1994;73:527-33.

    Article  CAS  PubMed  Google Scholar 

  27. Lee KS, Marwick TH, Cook SA, Go RT, Fix JS, James KB, et al. Prognosis of patients with left ventricular dysfunction, with and without viable myocardium after myocardial infarction. Relative efficacy of medical therapy and revascularization. Circulation 1994;90:2687-94.

    CAS  PubMed  Google Scholar 

  28. vom Dahl J, Altehoefer C, Sheehan FH, Buechin P, Schulz G, Schwarz ER, et al. Effect of myocardial viability assessed by technetium-99m-sestamibi SPECT and fluorine-18-FDG PET on clinical outcome in coronary artery disease. J Nucl Med 1997;38:742-8.

    CAS  PubMed  Google Scholar 

  29. Di Carli MF, Maddahi J, Rokhsar S, Schelbert HR, Bianco-Batlles D, Brunken RC, et al. Long-term survival of patients with coronary artery disease and left ventricular dysfunction: Implications for the role of myocardial viability assessment in management decisions. J Thorac Cardiovasc Surg 1998;116:997-1004.

    Article  CAS  PubMed  Google Scholar 

  30. Huitink JM, Visser FC, Bax JJ, van Lingen A, Groenveld AB, Teule GJ, et al. Predictive value of planar 18F-fluorodeoxyglucose imaging for cardiac events in patients after acute myocardial infarction. Am J Cardiol 1998;81:1072-7.

    Article  CAS  PubMed  Google Scholar 

  31. Beanlands R, deKemp R, Smith S, Johansen H, Ruddy T. FDG PET imaging alters clinical decision making in patients with impaired ventricular function. Am J Cardiol 1997;79:1092-5.

    Article  CAS  PubMed  Google Scholar 

  32. Wu KC, Zerhouni EA, Judd RM, Lugo-Olivieri CH, Barouch LA, Schulman SP, et al. Prognostic significance of microvascular obstruction by magnetic resonance imaging in patients with acute myocardial infarction. Circulation 1998;97:765-72.

    CAS  PubMed  Google Scholar 

  33. Roes SD, Kelle S, Kaandorp TA, Kokocinski T, Poldermans D, Lamb HJ, et al. Comparison of myocardial infarct size assessed with contrast-enhanced magnetic resonance imaging and left ventricular function and volumes to predict mortality in patients with healed myocardial infarction. Am J Cardiol 2007;100:930-6.

    Article  PubMed  Google Scholar 

  34. Bello D, Fieno DS, Kim RJ, Pereles FS, Passman R, Song G, et al. Infarct morphology identifies patients with substrate for sustained ventricular tachycardia. J Am Coll Cardiol 2005;45:1104-8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamshid Maddahi MD, FACC.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maddahi, J. Viability assessment with MRI is superior to FDG-PET for viability: Pro. J. Nucl. Cardiol. 17, 292–297 (2010). https://doi.org/10.1007/s12350-010-9201-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-010-9201-y

Keywords

Navigation