Log in

Anodal Direct Current Stimulation of the Cerebellum Reduces Cerebellar Brain Inhibition but Does Not Influence Afferent Input from the Hand or Face in Healthy Adults

  • Original Paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Background

The cerebellum controls descending motor commands by outputs to primary motor cortex (M1) and the brainstem in response to sensory feedback. The cerebellum may also modulate afferent input en route to M1 and the brainstem.

Objective

The objective of this study is to determine if anodal transcranial direct current stimulation (tDCS) to the cerebellum influences cerebellar brain inhibition (CBI), short afferent inhibition (SAI) and trigeminal reflexes (TRs) in healthy adults.

Methods

Data from two studies evaluating effects of cerebellar anodal and sham tDCS are presented. The first study used a twin coil transcranial magnetic stimulation (TMS) protocol to investigate CBI and combined TMS and cutaneous stimulation of the digit to assess SAI. The second study evaluated effects on trigemino-cervical and trigemino-masseter reflexes using peripheral nerve stimulation of the face.

Results

Fourteen right-handed healthy adults participated in experiment 1. CBI was observed at baseline and was reduced by anodal cerebellar DCS only (P < 0.01). There was SAI at interstimulus intervals of 25 and 30 ms at baseline (both P < 0.0001), but cerebellar tDCS had no effect. Thirteen right-handed healthy adults participated in experiment 2. Inhibitory reflexes were evoked in the ipsilateral masseter and sternocleidomastoid muscles. There was no effect of cerebellar DCS on either reflex.

Conclusions

Anodal DCS reduced CBI but did not change SAI or TRs in healthy adults. These results require confirmation in individuals with neurological impairment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ito M. Mechanisms of motor learning in the cerebellum. Brain Res. 2000;886(1–2):237–45.

    Article  CAS  PubMed  Google Scholar 

  2. Prudente CN, Hess EJ, **nah HA. Dystonia as a network disorder: what is the role of the cerebellum? Neuroscience. 2014;260:23–35.

    Article  CAS  PubMed  Google Scholar 

  3. Wu T, Hallett M. The cerebellum in Parkinson’s disease. Brain. 2013;136(Pt 3):696–709.

    Article  PubMed  Google Scholar 

  4. Bradnam L, Barry C. The role of the trigeminal sensory nuclear complex in the pathophysiology of craniocervical dystonia. J Neurosci. 2013;33(47):18358–67.

    Article  CAS  PubMed  Google Scholar 

  5. Galea JM, Jayaram G, Ajagbe L, Celnik P. Modulation of cerebellar excitability by polarity-specific noninvasive direct current stimulation. J Neurosci. 2009;29(28):9115–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Grimaldi G, Argyropoulos GP, Boehringer A, Celnik P, Edwards MJ, Ferrucci R, et al. Non-invasive cerebellar stimulation—a consensus paper. Cerebellum. 2013;13:121–38.

    Article  Google Scholar 

  7. Bradnam LV, Frasca J, Kimberley TJ. Direct current stimulation of primary motor cortex and cerebellum and botulinum toxin a injections in a person with cervical dystonia. Brain Stimul. 2014;7(6):909–11.

    Article  PubMed  Google Scholar 

  8. Bradnam LV, Graetz LJ, McDonnell MN, Ridding MC. Anodal transcranial direct current stimulation to the cerebellum improves handwriting and cyclic drawing kinematics in focal hand dystonia. Front Hum Neurosci. 2015;9:286.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bonni S, Ponzo V, Caltagirone C, Koch G. Cerebellar theta burst stimulation in stroke patients with ataxia. Funct Neurol. 2014;1–5.

  10. Sadnicka A, Kassavetis P, Saifee TA, Parees I, Rothwell JC, Edwards MJ. Cerebellar transcranial direct current stimulation does not alter motor surround inhibition. Int J Neurosci. 2013;123(6):425–32.

    Article  PubMed  Google Scholar 

  11. Koch G, Porcacchia P, Ponzo V, Carrillo F, Caceres-Redondo MT, Brusa L, et al. Effects of two weeks of cerebellar theta burst stimulation in cervical dystonia patients. Brain Stimul. 2014;7(4):564–72.

    Article  PubMed  Google Scholar 

  12. Grimaldi G, Oulad Ben Taib N, Manto M, Bodranghien F. Marked reduction of cerebellar deficits in upper limbs following transcranial cerebello-cerebral DC stimulation: tremor reduction and re-programming of the timing of antagonist commands. Front Syst Neurosci. 2014;8:9.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Sadnicka A, Hamada M, Bhatia KP, Rothwell JC, Edwards MJ. Cerebellar stimulation fails to modulate motor cortex plasticity in writing dystonia. Mov Disord. 2014;29:1304–7.

    Article  PubMed  Google Scholar 

  14. Holdefer RN, Miller LE, Chen LL, Houk JC. Functional connectivity between cerebellum and primary motor cortex in the awake monkey. J Neurophysiol. 2000;84(1):585–90.

    CAS  PubMed  Google Scholar 

  15. Hamada M, Strigaro G, Murase N, Sadnicka A, Galea JM, Edwards MJ, et al. Cerebellar modulation of human associative plasticity. J Physiol. 2012;590(Pt 10):2365–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Popa T, Velayudhan B, Hubsch C, Pradeep S, Roze E, Vidailhet M, et al. Cerebellar processing of sensory inputs primes motor cortex plasticity. Cereb Cortex. 2012;23:305–14.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Stefan K, Kunesch E, Benecke R, Cohen LG, Classen J. Mechanisms of enhancement of human motor cortex excitability induced by interventional paired associative stimulation. J Physiol. 2002;543(Pt 2):699–708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Stefan K, Kunesch E, Cohen LG, Benecke R, Classen J. Induction of plasticity in the human motor cortex by paired associative stimulation. Brain. 2000;123(Pt 3):572–84.

    Article  PubMed  Google Scholar 

  19. Di Lazzaro V, Profice P, Pilato F, Capone F, Ranieri F, Florio L, et al. The level of cortical afferent inhibition in acute stroke correlates with long-term functional recovery in humans. Stroke. 2012;43(1):250–2.

    Article  PubMed  Google Scholar 

  20. Sailer A, Molnar GF, Paradiso G, Gunraj CA, Lang AE, Chen R. Short and long latency afferent inhibition in Parkinson’s disease. Brain. 2003;126(Pt 8):1883–94.

    Article  PubMed  Google Scholar 

  21. Di Lorenzo F, Martorana A, Ponzo V, Bonni S, D’Angelo E, Caltagirone C, et al. Cerebellar theta burst stimulation modulates short latency afferent inhibition in Alzheimer’s disease patients. Front Aging Neurosci. 2013;5:2.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Nakashima K, Thompson PD, Rothwell JC, Day BL, Stell R, Marsden CD. An exteroceptive reflex in the sternocleidomastoid muscle produced by electrical stimulation of the supraorbital nerve in normal subjects and patients with spasmodic torticollis. Neurology. 1989;39(10):1354–8.

    Article  CAS  PubMed  Google Scholar 

  23. Quartarone A, Girlanda P, Di Lazzaro V, Majorana G, Battaglia F, Messina C. Short latency trigemino-sternocleidomastoid response in muscles in patients with spasmodic torticollis and blepharospasm. Clin Neurophysiol. 2000;111(9):1672–7.

    Article  CAS  PubMed  Google Scholar 

  24. Nakashima K, Takahashi K, Azumi T, Ishida G. Exteroceptive suppression of the masseter and temporalis muscles produced by electrical stimulation of the mental nerve in patients with Parkinson’s disease. Acta Neurol Scand. 1990;81(5):407–10.

    Article  CAS  PubMed  Google Scholar 

  25. Tokimura H, Di Lazzaro V, Tokimura Y, Oliviero A, Profice P, Insola A, et al. Short latency inhibition of human hand motor cortex by somatosensory input from the hand. J Physiol. 2000;523(Pt 2):503–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Helmich RC, Baumer T, Siebner HR, Bloem BR, Munchau A. Hemispheric asymmetry and somatotopy of afferent inhibition in healthy humans. Exp Brain Res. 2005;167(2):211–9.

    Article  CAS  PubMed  Google Scholar 

  27. Classen J, Steinfelder B, Liepert J, Stefan K, Celnik P, Cohen LG, et al. Cutaneomotor integration in humans is somatotopically organized at various levels of the nervous system and is task dependent. Exp Brain Res. 2000;130(1):48–59.

    Article  CAS  PubMed  Google Scholar 

  28. Di Lazzaro V, Pilato F, Dileone M, Tonali PA, Ziemann U. Dissociated effects of diazepam and lorazepam on short-latency afferent inhibition. J Physiol. 2005;569(Pt 1):315–23.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Di Lazzaro V, Oliviero A, Saturno E, Dileone M, Pilato F, Nardone R, et al. Effects of lorazepam on short latency afferent inhibition and short latency intracortical inhibition in humans. J Physiol. 2005;564(Pt 2):661–8.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Di Lazzaro V, Guney F, Akpinar Z, Yuruten B, Oliviero A, Pilato F, et al. Trigemino-cervical reflexes: clinical applications and neuroradiological correlations. Suppl Clin Neurophysiol. 2006;58:110–9.

    Article  PubMed  Google Scholar 

  31. Di Lazzaro V, Quartarone A, Higuchi K, Rothwell JC. Short-latency trigemino-cervical reflexes in man. Exp Brain Res. 1995;102(3):474–82.

    Article  PubMed  Google Scholar 

  32. Di Lazzaro V, Restuccia D, Nardone R, Tartaglione T, Quartarone A, Tonali P, et al. Preliminary clinical observations on a new trigeminal reflex: the trigemino-cervical reflex. Neurology. 1996;46(2):479–85.

    Article  PubMed  Google Scholar 

  33. Meunier S, Russmann H, Shamim E, Lamy JC, Hallett M. Plasticity of cortical inhibition in dystonia is impaired after motor learning and paired-associative stimulation. Eur J Neurosci. 2012;35(6):975–86.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Stamelou M, Edwards MJ, Hallett M, Bhatia KP. The non-motor syndrome of primary dystonia: clinical and pathophysiological implications. Brain. 2012;135(Pt 6):1668–81.

    Article  PubMed  Google Scholar 

  35. Ugawa Y, Uesaka Y, Terao Y, Hanajima R, Kanazawa I. Magnetic stimulation over the cerebellum in humans. Ann Neurol. 1995;37(6):703–13.

    Article  CAS  PubMed  Google Scholar 

  36. McCambridge AB, Bradnam LV, Stinear CM, Byblow WD. Cathodal transcranial direct current stimulation of the primary motor cortex improves selective muscle activation in the ipsilateral arm. J Neurophysiol. 2011;105(6):2937–42.

    Article  PubMed  Google Scholar 

  37. Bradnam LV, Stinear CM, Byblow WD. Theta burst stimulation of human primary motor cortex degrades selective muscle activation in the ipsilateral arm. J Neurophysiol. 2010;104(5):2594–602.

    Article  PubMed  Google Scholar 

  38. Christie A, Kamen G. Cortical inhibition is reduced following short-term training in young and older adults. Age. 2014;36(2):749–58.

    Article  PubMed  Google Scholar 

  39. Abraham G, Milev R, Lazowski L, Jokic R, du Toit R, Lowe A. Repetitive transcranial magnetic stimulation for treatment of elderly patients with depression—an open label trial. Neuropsychiatr Dis Treat. 2007;3(6):919–24.

    PubMed  PubMed Central  Google Scholar 

  40. Milev R, Abraham G, Hasey G, Cabaj JL. Repetitive transcranial magnetic stimulation for treatment of medication-resistant depression in older adults: a case series. J ECT. 2009;25(1):44–9.

    Article  PubMed  Google Scholar 

  41. Dickins DS, Sale MV, Kamke MR. Plasticity induced by intermittent theta burst stimulation in bilateral motor cortices is not altered in older adults. Neural Plast. 2015;2015:323409.

    PubMed  PubMed Central  Google Scholar 

  42. Rossini PM, Barker AT, Berardelli A, Caramia MD, Caruso G, Cracco RQ, et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee. Electroencephalogr Clin Neurophysiol. 1994;91(2):79–92.

    Article  CAS  PubMed  Google Scholar 

  43. Koch G, Oliveri M, Torriero S, Salerno S, Lo Gerfo E, Caltagirone C. Repetitive TMS of cerebellum interferes with millisecond time processing. Exp Brain Res. 2007;179(2):291–9.

    Article  PubMed  Google Scholar 

  44. Torriero S, Oliveri M, Koch G, Lo Gerfo E, Salerno S, Ferlazzo F, et al. Changes in cerebello-motor connectivity during procedural learning by actual execution and observation. J Cogn Neurosci. 2011;23(2):338–48.

    Article  PubMed  Google Scholar 

  45. Lu MK, Tsai CH, Ziemann U. Cerebellum to motor cortex paired associative stimulation induces bidirectional STDP-like plasticity in human motor cortex. Front Hum Neurosci. 2012;6:260.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Daskalakis ZJ, Paradiso GO, Christensen BK, Fitzgerald PB, Gunraj C, Chen R. Exploring the connectivity between the cerebellum and motor cortex in humans. J Physiol. 2004;557(Pt 2):689–700.

    Article  CAS  PubMed  Google Scholar 

  47. Gandiga PC, Hummel FC, Cohen LG. Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation. Clin Neurophysiol. 2006;117(4):845–50.

    Article  PubMed  Google Scholar 

  48. Serrao M, Rossi P, Parisi L, Perrotta A, Bartolo M, Cardinali P, et al. Trigemino-cervical-spinal reflexes in humans. Clin Neurophysiol. 2003;114(9):1697–703.

    Article  PubMed  Google Scholar 

  49. Ertekin C, Celebisoy N, Uludag B. Trigemino-cervical reflexes in normal subjects. J Neurol Sci. 1996;143(1–2):84–90.

    Article  CAS  PubMed  Google Scholar 

  50. Matthews D, Murtagh P, Risso A, Jones G, Alexander CM. Does interhemispheric communication relate to the bilateral function of muscles? A study of scapulothoracic muscles using transcranial magnetic stimulation. J Electromyogr Kinesiol. 2013;23(6):1370–4.

    Article  CAS  PubMed  Google Scholar 

  51. Rom DM. A sequentially rejective test procedure based on a modified Bonferroni inequality. Biometrika. 1990;77(3):663–5.

    Article  Google Scholar 

  52. Chan CY, Nicholson C. Modulation by applied electric fields of Purkinje and stellate cell activity in the isolated turtle cerebellum. J Physiol. 1986;371:89–114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Oulad Ben Taib N, Manto M. Trains of epidural DC stimulation of the cerebellum tune corticomotor excitability. Neural Plast. 2013;2013:613197.

    PubMed  PubMed Central  Google Scholar 

  54. Rampersad SM, Janssen AM, Lucka F, Aydin U, Lanfer B, Lew S, et al. Simulating transcranial direct current stimulation with a detailed anisotropic human head model. IEEE Trans Neural Syst Rehabil Eng. 2014;22(3):441–52.

    Article  PubMed  Google Scholar 

  55. Brusa L, Ceravolo R, Kiferle L, Monteleone F, Iani C, Schillaci O, et al. Metabolic changes induced by theta burst stimulation of the cerebellum in dyskinetic Parkinson’s disease patients. Parkinsonism Relat Disord. 2012;18(1):59–62.

    Article  PubMed  Google Scholar 

  56. Oliveri M, Koch G, Torriero S, Caltagirone C. Increased facilitation of the primary motor cortex following 1 Hz repetitive transcranial magnetic stimulation of the contralateral cerebellum in normal humans. Neurosci Lett. 2005;376(3):188–93.

    Article  CAS  PubMed  Google Scholar 

  57. Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol. 2000;527(Pt 3):633–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lamont MG, Weber JT. The role of calcium in synaptic plasticity and motor learning in the cerebellar cortex. Neurosci Biobehav Rev. 2012;36(4):1153–62.

    Article  CAS  PubMed  Google Scholar 

  59. Kojovic M, Caronni A, Bologna M, Rothwell JC, Bhatia KP, Edwards MJ. Botulinum toxin injections reduce associative plasticity in patients with primary dystonia. Mov Disord. 2011;26(7):1282–9.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Gunduz A, Ergin H, Kiziltan ME. Long latency trigemino-cervical reflex in patients with cervical dystonia. Neurol Sci. 2015;36(1):103–8.

    Article  PubMed  Google Scholar 

  61. Billig I, Yatim N, Compoint C, Buisseret-Delmas C, Buisseret P. Cerebellar afferences from the mesencephalic trigeminal nucleus in the rat. Neuroreport. 1995;6(17):2293–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr Brenton Hordacre, Mr Lynton Graetz, Ms Sadina Hasmofu and Ms Donna Alessio for assistance with data collection. This project was partially supported by a Flinders Medical Foundation Research Grant (SD and LB).

Conflict of Interest

The authors have no conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynley V. Bradnam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doeltgen, S.H., Young, J. & Bradnam, L.V. Anodal Direct Current Stimulation of the Cerebellum Reduces Cerebellar Brain Inhibition but Does Not Influence Afferent Input from the Hand or Face in Healthy Adults. Cerebellum 15, 466–474 (2016). https://doi.org/10.1007/s12311-015-0713-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-015-0713-5

Keywords

Navigation