Log in

Adaptive-filter Models of the Cerebellum: Computational Analysis

  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Many current models of the cerebellar cortical microcircuit are equivalent to an adaptive filter using the covariance learning rule. The adaptive filter is a development of the original Marr–Albus framework that deals naturally with continuous time-varying signals, thus addressing the issue of 'timing' in cerebellar function, and it can be connected in a variety of ways to other parts of the system, consistent with the microzonal organization of cerebellar cortex. However, its computational capacities are not well understood. Here we summarise the results of recent work that has focused on two of its intrinsic properties. First, an adaptive filter seeks to decorrelate its (mossy fibre) inputs from a (climbing fibre) teaching signal. This procedure can be used both for sensory processing, e.g. removal of interference from sensory signals, and for learning accurate motor commands, by decorrelating an efference copy of those commands from a sensory signal of inaccuracy. As a model of the cerebellum the adaptive filter thus forms a natural link between events at the cellular level, such as forms of synaptic plasticity and the learning rules they embody, and intelligent behaviour at the system level. Secondly, it has been shown that the covariance learning rule enables the filter to handle input and intrinsic noise optimally. Such optimality may underlie the recently described role of the cerebellum in producing accurate smooth pursuit eye movements in the face of sensory noise. Moreover, it has the consequence of driving most input weights to very small values, consistent with experimental data that many parallel-fibre synapses are normally silent. The effectiveness of silent synapses can only be altered by LTP, so learning tasks depending on a reduction of Purkinje cell firing require the synapses to be embedded in a second, inhibitory pathway from parallel fibre to Purkinje cell. This pathway and the appropriate climbing-fibre related plasticity have been described experimentally, and its presence has implications for asymmetries and hysteresis in behavioural learning rates that are also consistent with experimental observations. These computational properties of the adaptive filter suggest that it is both powerful and realistic enough to be a suitable candidate model of the cerebellar cortical microcircuit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. Eccles JC, Ito M, Szentágothai J (1967) The cerebellum as a neuronal machine. Springer, Berlin

    Google Scholar 

  2. Marr D (1969) A theory of cerebellar cortex. J Physiol 202:437–470

    PubMed  CAS  Google Scholar 

  3. Albus JS (1971) A theory of cerebellar function. Math Biosci 10:25–61

    Article  Google Scholar 

  4. Ito M (2006) Cerebellar circuitry as a neuronal machine. Prog Neurobiol 78:272–303

    Article  PubMed  Google Scholar 

  5. Fujita M (1982) Adaptive filter model of the cerebellum. Biol Cybern 45:195–206

    Article  PubMed  CAS  Google Scholar 

  6. Sejnowski TJ (1977) Storing covariance with nonlinearly interacting neurons. J Math Biol 4:303–321

    Article  PubMed  CAS  Google Scholar 

  7. Widrow B, Stearns SD (1985) Adaptive signal processing. Prentice-Hall Inc, Engelwood Cliffs NJ

    Google Scholar 

  8. Porrill J, Dean P (2007) Recurrent cerebellar loops simplify adaptive control of redundant and nonlinear motor systems. Neural Comp 19:170–193

    Article  Google Scholar 

  9. Porrill J, Dean P (2007) Cerebellar motor learning: when is cortical plasticity not enough? PLoS Comput Biol 3:1935–1950

    Article  PubMed  CAS  Google Scholar 

  10. Dean P, Porrill J (2008) Oculomotor anatomy and the motor-error problem: the role of the paramedian tract nuclei. Prog Brain Res 171:177–186

    Article  PubMed  Google Scholar 

  11. Lenz A, Balakrishnan T, Pipe AG, Melhuish C (2008) An adaptive gaze stabilisation controller inspired by the vestibulo-ocular reflex. Bioinspir Biomim 3:35001

    Article  PubMed  CAS  Google Scholar 

  12. Apps R, Garwicz M (2005) Anatomical and physiological foundations of cerebellar information processing. Nat Rev, Neurosci 6:297–311

    Article  CAS  Google Scholar 

  13. Dean P, Porrill J, Stone JV (2002) Decorrelation control by the cerebellum achieves oculomotor plant compensation in simulated vestibulo-ocular reflex. Proc R Soc Lond B Biol Sci 269:1895–1904

    Article  Google Scholar 

  14. Dean P, Porrill J, Stone JV (2004) Visual awareness and the cerebellum: possible role of decorrelation control. Prog Brain Res 144:61–75

    Article  PubMed  Google Scholar 

  15. Porrill J, Dean P, Stone JV (2004) Recurrent cerebellar architecture solves the motor error problem. Proc R Soc Lond B Biol Sci 271:789–796

    Article  Google Scholar 

  16. Porrill J, Dean P (2008) Silent synapses, LTP and the indirect parallel-fibre pathway: computational consequences of optimal noise processing. PLoS Comput Biol 4:e1000085

    Article  PubMed  Google Scholar 

  17. Osborne LC, Hohl SS, Bialek W, Lisberger SG (2007) Time course of precision in smooth-pursuit eye movements of monkeys. J Neurosci 27:2987–2998

    Article  PubMed  CAS  Google Scholar 

  18. Medina JF, Lisberger SG (2007) Variation, signal, and noise in cerebellar sensory-motor processing for smooth-pursuit eye movements. J Neurosci 27:6832–6842

    Article  PubMed  CAS  Google Scholar 

  19. Isope P, Barbour B (2002) Properties of unitary granule cell -> Purkinje cell synapses in adult rat cerebellar slices. J Neurosci 22:9668–9678

    PubMed  CAS  Google Scholar 

  20. Jörntell H, Ekerot CF (2002) Receptive field plasticity profoundly alters the cutaneous parallel fiber synaptic input to cerebellar interneurons in vivo. J Neurosci 23:9620–9631

    Google Scholar 

  21. Ekerot CF, Jorntell H (2003) Parallel fiber receptive fields: a key to understanding cerebellar operation and learning. Cerebellum 2:101–109

    Article  PubMed  Google Scholar 

  22. Coesmans M, Weber JT, De Zeeuw CI, Hansel C (2004) Bidirectional parallel fiber plasticity in the cerebellum under climbing fiber control. Neuron 44:691–700

    Article  PubMed  CAS  Google Scholar 

  23. Jörntell H, Hansel C (2006) Synaptic memories upside down: bidirectional plasticity at cerebellar parallel fiber-Purkinje cell synapses. Neuron 52:227–238

    Article  PubMed  Google Scholar 

  24. Jörntell H, Ekerot CF (2002) Reciprocal bidirectional plasticity of parallel fiber receptive fields in cerebellar Purkinje cells and their afferent interneurons. Neuron 34:797–806

    Article  PubMed  Google Scholar 

  25. Boyden ES, Raymond JL (2003) Active reversal of motor memories reveals rules governing memory encoding. Neuron 39:1031–1042

    Article  PubMed  CAS  Google Scholar 

  26. Boyden ES, Katoh A, Raymond JL (2004) Cerebellum-dependent learning: the role of multiple plasticity mechanisms. Ann Rev Neurosci 27:581–609

    Article  PubMed  CAS  Google Scholar 

  27. Kimpo RR, Boyden ES, Katoh A, Ke MC, Raymond JL (2005) Distinct patterns of stimulus generalization of increases and decreases in VOR gain. J Neurophysiol 94:3092–3100

    Article  PubMed  Google Scholar 

  28. Cohen MR, Meissner GW, Schafer RJ, Raymond JL (2004) Reversal of motor learning in the vestibulo-ocular reflex in the absence of visual input. Learn Mem 11:559–565

    Article  PubMed  Google Scholar 

  29. Kuki Y, Hirata Y, Blazquez PM, Heiney SA, Highstein SM (2004) Memory retention of vestibuloocular reflex motor learning in squirrel monkeys. Neurorep 15:1007–1011

    Article  CAS  Google Scholar 

  30. Kehoe EJ (2006) Repeated acquisitions and extinctions in classical conditioning of the rabbit nictitating membrane response. Learn Memory 13:366–375

    Article  Google Scholar 

  31. Jirenhed DA, Bengtsson F, Hesslow G (2007) Acquisition, extinction, and reacquisition of a cerebellar cortical memory trace. J Neurosci 27:2493–2502

    Article  PubMed  CAS  Google Scholar 

  32. Gomi H, Kawato M (1992) Adaptive feedback control models of the vestibulocerebellum and spinocerebellum. Biol Cybern 68:105–114

    Article  PubMed  CAS  Google Scholar 

  33. Coenen OJMD, Sejnowski TJ (1996) Learning to make predictions in the cerebellum may explain the anticipatory modulation of the vestibulo-ocular reflex (VOR) gain with vergence. In: Proceedings of the 3rd Joint Symposium on Neural Computation, Institute of Neural Computation; 1996; University of California, San Diego, pp 202–221

  34. Kettner RE, Mahamud S, Leung HC, Sitkoff N, Houk JC, Peterson BW et al (1997) Prediction of complex two-dimensional trajectories by a cerebellar model of smooth pursuit eye movement. J Neurophysiol 77:2115–2130

    PubMed  CAS  Google Scholar 

  35. Schweighofer N, Spoelstra J, Arbib MA, Kawato M (1998) Role of the cerebellum in reaching movements in humans. II. A neural model of the intermediate cerebellum. Eur J Neurosci 10:95–105

    Article  PubMed  CAS  Google Scholar 

  36. Medina JF, Nores WL, Mauk MD (2002) Inhibition of climbing fibres is a signal for the extinction of conditioned eyelid responses. Nature 416:330–333

    Article  PubMed  CAS  Google Scholar 

  37. Yamamoto K, Kobayashi Y, Takemura A, Kawano K, Kawato M (2002) Computational studies on acquisition and adaptation of ocular following responses based on cerebellar synaptic plasticity. J Neurophysiol 87:1554–1571

    PubMed  Google Scholar 

  38. Walter JT, Khodakhah K (2006) The linear computational algorithm of cerebellar Purkinje cells. J Neurosci 26:12861–12872

    Article  PubMed  CAS  Google Scholar 

  39. Jörntell H, Ekerot CF (2006) Properties of somatosensory synaptic integration in cerebellar granule cells in vivo. J Neurosci 26:11786–11797

    Article  PubMed  Google Scholar 

  40. Holtzman T, Rajapaksa T, Mostofi A, Edgley SA (2006) Different responses of rat cerebellar Purkinje cells and Golgi cells evoked by widespread convergent sensory inputs. J Physiol-London 574:491–507

    Article  PubMed  CAS  Google Scholar 

  41. Mittmann W, Hausser M (2007) Linking synaptic plasticity and spike output at excitatory and inhibitory synapses onto cerebellar Purkinje cells. J Neurosci 27:5559–5570

    Article  PubMed  CAS  Google Scholar 

  42. McKay BE, Engbers JD, Mehaffey WH, Gordon GR, Molineux ML, Bains JS et al (2007) Climbing fiber discharge regulates cerebellar functions by controlling the intrinsic characteristics of Purkinje cell output. J Neurophysiol 97:2590–2604

    Article  PubMed  CAS  Google Scholar 

  43. Szapiro G, Barbour B (2007) Multiple climbing fibers signal to molecular layer interneurons exclusively via glutamate spillover. Nat Neurosci 10:735–742

    Article  PubMed  CAS  Google Scholar 

  44. Shin SL, Hoebeek FE, Schonewille M, De Zeeuw CI, Aertsen A, De Schutter E (2007) Regular patterns in cerebellar Purkinje cell simple spike trains. PLoS ONE 2:e485

    Article  PubMed  Google Scholar 

  45. Schonewille M, Khosrovanl S, Winkelman BHJ, Hoebeek FE, De Jeu MTG, Larsen IM et al (2006) Purkinje cells in awake behaving animals operate at the upstate membrane potential. Nat Neurosci 9:459–461

    Article  PubMed  CAS  Google Scholar 

  46. Urbano FJ, Simpson JI, Llinas RR (2006) Somatomotor and oculomotor inferior olivary neurons have distinct electrophysiological phenotypes. Proc Natl Acad Sci U S A 103:16550–16555

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Supported by the UK Engineering and Physical Sciences Research Council, under the Novel Computation Initiative (GR/T10602/01), and the UK Biology and Biotechnology Research Council under the Integrative Analysis of Brain and Behaviour Initiative (BBS/B/17026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Dean.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dean, P., Porrill, J. Adaptive-filter Models of the Cerebellum: Computational Analysis. Cerebellum 7, 567–571 (2008). https://doi.org/10.1007/s12311-008-0067-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-008-0067-3

Keywords

Navigation