Log in

Application potential of chemical weathering indices in the identification of hydrothermally altered surface volcanic rocks from geothermal fields

  • Review
  • Published:
Geosciences Journal Aims and scope Submit manuscript

Abstract

Applicability of the Chemical Weathering Indices (CWIs) in an identification of fresh and hydrothermally altered rocks has been carried out by applying them to the rocks with known alteration status. The application clearly indicated that all 47 CWIs have correctly identified all fresh rocks (success rate, SR ∼100%). Similarly, most of the CWIs are correctly identified the hydrothermally altered rocks (SR of 78–100%), whereas the proper reasons are identified for the remaining CWIs for their comparatively lower success rates. The study clearly shows an applicability of CWIs in the identification of fresh and hydrothermally altered igneous rocks. As an application to identify the status of the hydrothermal alteration (least or intensive) of the surface rocks from geothermal areas, all 47 CWIs are applied to the rocks obtained from the surface areas of the six main geothermal fields of Mexico. Most of the indices have shown SR of ≥ 80% in identifying fresh and hydrothermally altered rocks of these geothermal fields. Based on the SR of CWIs, the 15 best performer CWIs are identified for the Mexican geothermal fields. The present work clearly reveals that if cautiously applied, by considering the existing differences between the weathering and hydrothermal alteration processes, most of the weathering indices may be successfully applied in correctly identifying the intensity of hydrothermal alteration of surface rocks of geothermal areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armstrong-Altrin, J.S., 2020, Detrital zircon U-Pb geochronology and geochemistry of the Riachuelos and Palma Sola beach sediments, Veracruz State, Gulf of Mexico: a new insight on palaeoenvironment. Journal of Palaeogeography, 9, 28. https://doi.org/10.1186/s42501-020-00075-9

    Article  Google Scholar 

  • Bozkurtoğlu, E., Vardar, M., Suner, F., and Zambak, C., 2006, A new numerical approach to weathering and alteration in rock using a pilot area in the Tuzla geothermal area, Turkey. Engineering Geology, 87, 33–47.

    Article  Google Scholar 

  • Buggle, B., Glaser, B., Hambach, U., Gerasimenko, N., and Markovic, S., 2011, An evaluation of geochemical weathering indices in loess-paleosol studies. Quaternary International, 240, 11–21.

    Article  Google Scholar 

  • Capra, L., Macias, J.L., Espíndola, J.M., and Siebe, C., 1998, Holocene plinian eruption of La Virgen volcano, Baja California, Mexico. Journal of Volcanology and Geothermal Research, 80, 239–266.

    Article  Google Scholar 

  • Cathelineau, M., Oliver, R., and Nieva, D., 1987, Geochemistry of volcanic series of the Los Azufres geothermal field (Mexico). Geofisica Internacional, 26, 273–290.

    Article  Google Scholar 

  • Che, V.B., Fontijn, K., Ernst, G.G.J., Kervyn, M., Elburg, M., Ranst, E.V., and Suh, C.E., 2012, Evaluating the degree of weathering in landslide-prone soils in the humid tropics: the case of Limbe, SW Cameroon. Geoderma, 170, 378–389.

    Article  Google Scholar 

  • Clarke, F.W. and Washington, H.S., 1922, The average chemical composition of igneous rocks. Proceedings of the National Academy of Sciences of the United States of America, 8, 108–115.

    Article  Google Scholar 

  • Colman, S.M., 1982, Chemical weathering of basalts and andesites: evidence from weathering rinds. USGS Professional Paper 1246, U.S. Geological Survey, Reston, 51 p. https://doi.org/10.3133/pp1246

    Google Scholar 

  • Dahms, D., Favilli, F., Krebs, R., and Egli, M., 2012, Soil weathering and accumulation rates of oxalate-extractable phases derived from alpine chrono sequences of up to 1 Ma in age. Geomorphology, 151–152, 99–113.

    Article  Google Scholar 

  • Duzgoren-Aydin, N.S., Aydin, A., and Malpas, J., 2002, Re-assessment of chemical weathering indices: case study on pyroclastic rocks of Hong Kong. Engineering Geology, 63, 99–119.

    Article  Google Scholar 

  • Eggleton, R.A., Foudoulis, C., and Varkevisser, D., 1987, Weathering of basalt: changes in rock chemistry and mineralogy. Clays and Clay Minerals, 35, 161–169.

    Article  Google Scholar 

  • Fedo, C.M., Nesbitt, H.W., and Young, G.M., 1995, Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology, 23, 921–924.

    Article  Google Scholar 

  • Gardner, L.R., 1980, Mobilization of Al and Ti during rock weathering — isovolumetric geochemical evidence. Chemical Geology, 30, 151–165.

    Article  Google Scholar 

  • Gardner, L.R., Kheoruenromne, I., and Chen, H.S., 1978, Isovolumetric geochemical investigation of a buried granite saprolite near Columbia, SC, USA. Geochimica et Cosmochimica Acta, 42, 417–424.

    Article  Google Scholar 

  • Gifkins, C., Herrmann, W., and Large, R., 2005, Altered Volcanic Rocks: A Guide to Description and Interpretation. Centre for Ore Deposit Research, University of Tasmania, Hobart, 288 p.

    Google Scholar 

  • Goldberg, K. and Humayun, M., 2010, The applicability of the chemical index of alteration as a paleoclimatic indicator: an example from the Permian of the Paraná Basin, Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology, 293, 175–183.

    Article  Google Scholar 

  • Gupta, A.S. and Rao, K.S., 2001, Weathering indices and their applicability for crystalline rocks. Bulletin of Engineering Geology and the Environment, 60, 201–221.

    Article  Google Scholar 

  • Gupta, H. and Roy, S., 2007, Geothermal Energy: An Alternative Resource for the 21st Century. Elsevier Science, Amsterdam, 292 p.

    Google Scholar 

  • Harijoko, A., Uruma, R., Wibowo, H.E., Setijadji, L.D., Imai, A., and Watanabe, K., 2010, Long-term volcanic evolution surrounding Dieng geothermal area, Indonesia. Proceedings of the World Geothermal Congress 2010, Bali, Apr. 25–29. https://www.geothermal-energy.org/pdf/IGAstandard/WGC/2010/1270.pdf[Accessed on 25 August 2021].

  • Harnois, L., 1988, The CIW index: a new chemical index of weathering. Sedimentary Geology, 55, 319–322.

    Article  Google Scholar 

  • Harnois, L. and Moore, J.M., 1988, Geochemistry and origin of the ore chemistry formation, a transported paleoregolith in the Grenville Province of Southern Ontario, Canada. Chemical Geology, 69, 267–289.

    Article  Google Scholar 

  • Harrassowitz, H., 1926, Laterit, Materiel und Versuch erdgeschichtlicher Auswertung, Fortschr. Geologie und Palaeontologie, 4, 253–266.

    Google Scholar 

  • Haussingerm, H. and Okrusch, M., 1993, Geochemistry of premetamorphic hydrothermal alteration of metasedimentary rocks associated with the Gorob Massive Sulfide Prospect, Damara Orogen, Namibia. Economic Geology, 88, 72–90.

    Article  Google Scholar 

  • Hill, I.G., Worden, R.H., and Meighan, I.G., 2000, Yttrium: the immobility-mobility transition during basaltic weathering. Geology, 28, 923–926

    Article  Google Scholar 

  • Hodder, A.P.W., 1984, Thermodynamic interpretation of weathering indices and its application to engineering properties of rocks. Engineering Geology, 20, 241–251.

    Article  Google Scholar 

  • Hodges, D.J. and Manojlovic, P.M., 1993, Application of lithogeochemistry to exploration for deep VMS deposits in high grade metamorphic rocks, Snow Lake, Manitoba. Journal of Geochemical Exploration, 48, 201–224.

    Article  Google Scholar 

  • Irfan, T.Y., 1994, Mechanism of creep in a volcanic Saprolite. Quarterly Journal of Engineering Geology, 27, 211–230.

    Article  Google Scholar 

  • Irfan, T.Y., 1996, Mineralogy, fabric properties and classification of weathered granitic rocks in Hong Kong. Quarterly Journal of Engineering Geology, 29, 5–35.

    Article  Google Scholar 

  • Ishikawa, Y., Sawaguchi, T., Iwaya, S-i., and Horiuchi, M., 1976, Delineation of prospecting targets for Kuroko deposits based on modes of volcanism of underlying dacite and alteration haloes. Mining Geology, 26, 105–117 (in Japanese). https://doi.org/10.11456/shigenchishitsu1951.26.105

    Google Scholar 

  • Ishikawa, Y. and Yanagisawa, Y., 1974, Geology of the Ainai mine, with special reference to syngenetic origin of the Daikoku deposits. In: Ishihara, S. (ed.), Geology of Kuroko Deposits. The Society of Mining Geologists of Japan, Tokyo, p. 213–219.

    Google Scholar 

  • Jayawardena, U. de S. and Izawa, E., 1994a, Application of present indices of chemical weathering for Precambrian metamorphic rocks in Sri Lanka. Bulletin of the International Association of Engineering Geology, 49, 55–61.

    Article  Google Scholar 

  • Jayawardena, U. de S. and Izawa, E., 1994b, A new chemical index of weathering for metamorphic silicate rocks in tropical regions: a study from Sri Lanka. Engineering Geology, 36, 303–310.

    Article  Google Scholar 

  • Jenny, H., 1931, Behavior of Potassium and Sodium During the Process of Soil Formation. Research Bulletin 162, University of Missouri, Agricultural Experiment Station, Columbia, 63 p.

    Google Scholar 

  • Jenny, H., 1941, Factors of Soil Formation-A System of Quantitative Pedology. Dover Publications, New York, 320 p.

    Google Scholar 

  • Kanji, M., He, M., and Sousa, L.R., 2020, Soft Rock Mechanics and Engineering. Springer, Cham, 757 p.

    Book  Google Scholar 

  • Keith, S.B., 1987, Magma Series and Mineral Deposits. MagmaChem Exploration INC., Phoenix.

    Google Scholar 

  • Khanlari, G.R., Heidari, M., and Momeni, A.A., 2012, Assessment of weathering processes effect on engineering properties of Alvand granitic rocks (west of Iran), based on weathering indices. Environmental Earth Sciences, 67, 713–725.

    Article  Google Scholar 

  • Kronberg, B.I. and Nesbitt, H.W., 1981, Quantification of weathering, soil geochemistry and soil fertility. Journal of Soil Science, 32, 453–459.

    Article  Google Scholar 

  • Large, R.R., Gemmell, J.B., Paulick, H., and Huston, D.L., 2001, The alteration box plot—a simple approach to understanding the relationship between alteration mineralogy and lithogeochemistry associated with volcanic-hosted massive sulfide deposits. Economic Geology, 96, 957–971.

    Article  Google Scholar 

  • Le Bas, M., Le Maitre, R., Streckeisen, A., and Zanettin, B., 1986, A chemical classification of volcanic rocks based on the total alkalisilica diagram. Journal of Petrology, 27, 745–750.

    Article  Google Scholar 

  • Li, L.Y., Ohtsubo, M., Higashi, T., Yamaoka, S., and Morishita, T., 2007, Leachability of municipal solid waste ashes in simulated landfill conditions. Waste Manage, 27, 932–945.

    Article  Google Scholar 

  • Li, W.D., Wang, W.B., Cheng, Z.F., and Zhou, H.M., 1995, Geochemistry of lateritization process and the possibility of forming lateritic type gold deposits in Southern China. Geological Press. (in Chinese with English abstract)

  • Macias-Vázquez, J.L. and Rocha-López, V.S., 2013, Evolución vulcanológica del Volcán Cerro Prieto, B.C. Geotermia, 26, 24–33.

    Google Scholar 

  • Mahood, G.A., 1981a, Chemical evolution of a Pleistocene rhyolitic center: Sierra La Primavera, Jalisco, México. Contributions to Mineralogy and Petrology, 77, 129–149.

    Article  Google Scholar 

  • Mahood, G.A., 1981b, A summary of the geology and petrology of the Sierra La Primavera, Jalisco, Mexico. Journal of Geophysical Research, 86, 10137–10152.

    Article  Google Scholar 

  • Mahood, G.A., Truesdell, A.H., and Templos, M.L.A., 1983, A reconnaissance geochemical study of La Primavera geothermal area, Jalisco, Mexico. Journal of Volcanology and Geothermal Research, 16, 247–261.

    Article  Google Scholar 

  • Maynard, J.B., 1992, Chemistry of modern soils as a guide to interpreting Precambrian paleosols. The Journal of Geology, 100, 279–289.

    Article  Google Scholar 

  • McLennan, S.M., 1993, Weathering and global denudation. The Journal of Geology, 101, 295–303.

    Article  Google Scholar 

  • Miura, K., 1973, Weathering in plutonic rocks (Part I) — weathering during the late Pliocene of Gotsu plutonic rocks. Journal of the Japan Society of Engineering Geology, 14, 87–102. https://doi.org/10.5110/jjseg.14.87

    Article  Google Scholar 

  • Moignien, R., 1966, Review of research on laterites. United Nations Educational, Scientific and Cultural Organization Place de Fontenoy, Paris, 148 p.

    Google Scholar 

  • Neall, V.E., 1977, Genesis and weathering of andosols in Taranaki, New Zealand. Soil Science, 123, 400–408.

    Article  Google Scholar 

  • Nesbitt, H.W. and Young, G.M., 1982, Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299, 715–717.

    Article  Google Scholar 

  • Nesbitt, H.W. and Young, G.M., 1984 Prediction of some weathering trends of Plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochimica et Cosmochimica Acta, 48, 1523–1534. https://doi.org/10.1016/0016-7037(84)90408-3

    Article  Google Scholar 

  • Nettleton, A.F.S. and Kiek, S.N., 1966, The significance of silica sesquioxide ratio in weathering of pavement materials — a review paper. Proceedings of the 3rd Australian Road Research Board Conference, Sydney, Sep. 5–9, 3, p. 1339–1373.

  • Ng, C.W.W., Guan, P., and Shang, Y.J., 2001, Weathering mechanisms and indices of igneous rocks of Hong Kong. Quarterly Journal of Engineering Geology and Hydrogeology, 34, 133–151.

    Article  Google Scholar 

  • Nicholson, K., 1993, Geothermal Fluids: Chemistry and Exploration Techniques. Springer, Berlin, 265 p.

    Book  Google Scholar 

  • Nordt, L.C. and Driese, S.D., 2010, New weathering index improves paleorainfall estimates from Vertosols. Geology, 38, 407–410.

    Article  Google Scholar 

  • Okewale, I.A., 2020, Applicability of chemical indices to characterize weathering degrees in decomposed volcanic rocks. Catena, 189, 104475.

    Article  Google Scholar 

  • Ollier, C.D., 1983, Weathering or hydrothermal alteration? Catena, 10, 57–59.

    Article  Google Scholar 

  • Pandarinath, K., Dulski, P., Torres-Alvarado, I.S., and Verma, S.P., 2008, Element mobility during the hydrothermal alteration of rhyolitic rocks of the Los Azufres geothermal field, Mexico. Geothermics, 37, 53–72.

    Article  Google Scholar 

  • Pandarinath, K., García-Soto, A.Y., Santoyo, E., Guevara, M., and Gonzalez-Partida, E., 2020, Mineralogical and geochemical changes due to hydrothermal alteration of the volcanic rocks at Acoculco geothermal system, Mexico. Geological Journal, 55, 6508–6526.

    Article  Google Scholar 

  • Pandarinath, K., Shankar, R., Alvarado, I.S.T., and Warrier, A.K., 2014, Magnetic susceptibility of volcanic rocks in geothermal areas: application potential in geothermal exploration studies for identification of rocks and zones of hydrothermal alteration. Arabian Journal of Geosciences, 7, 2851–2860.

    Article  Google Scholar 

  • Pandarinath, K., Shankar, R., Santoyo, E., Shwetha, S., García-Soto, A., and Gonzalez-Partida, E., 2019, A rock magnetic fingerprint of hydrothermal alteration in volcanic rocks — an example from the Los Azufres Geothermal Field, Mexico. Journal of South American Earth Sciences, 91, 260–271.

    Article  Google Scholar 

  • Parker, A., 1970, An index of weathering for silicate rocks. Geological Magazine, 107, 501–504.

    Article  Google Scholar 

  • Price, J.R. and Velbel, M.A., 2003, Chemical weathering indices applied to weathering profiles developed on heterogeneous felsic metamorphic parent rocks. Chemical Geology, 202, 397–416.

    Article  Google Scholar 

  • Ramos-Vázquez, M.A. and Armstrong-Altrin, J.S., 2021, Provenance of sediments from Barra del Tordo and Tesoro beaches, Tamaulipas State, northwestern Gulf of Mexico. Journal of Palaeogeography, 10, 20. https://doi.org/10.1186/s42501-021-00101-4

    Article  Google Scholar 

  • Reed, M.H. and Spycher, N.F., 1984, Calculation of pH and mineral equilibria in hydrothermal waters with application to geothermometry and studies of boiling and dilution. Geochimica et Cosmochimica Acta, 48, 1479–1492.

    Article  Google Scholar 

  • Reiche, P., 1943, Graphic representation of chemical weathering. Journal of Sedimentary Research, 13, 58–68. https://doi.org/10.1306/D4269198-2B26-11D7-8648000102C1865D

    Google Scholar 

  • Roaldset, E., 1972, Mineralogy and geochemistry of Quaternary clays in the Numedal area, southern Norway. Norsk Geologisk Tidsskrift, 52, 335–369.

    Google Scholar 

  • Rocha-Filho, P., Antunes, F.S., and Falcao, M.F.G., 1985, Quantitative influence of the weathering degree upon the mechanical properties of a young gneiss residual soil. Proceedings of the 1st International Conference on Geomechanics in Tropical Lateritic and Saprolitic Soils, Brasilia, Feb. 11–14, 1, p. 281–294.

  • Rudnick, R.L. and Gao, S., 2003, Composition of the continental crust. In: Holland, H.D. and Turekian, K.K. (eds.), Treatise on Geochemistry. Elsevier-Pergamon, Oxford, 3, p. 1–64. https://doi.org/10.1016/B0-08-043751-6/03016-4

    Google Scholar 

  • Ruxton, B.P., 1968, Measures of the degree of chemical weathering of rocks. The Journal of Geology, 76, 518–527.

    Article  Google Scholar 

  • Selby, M.J., 1993, Hillslope Materials and Processes. Oxford University Press, Oxford, 480 p.

    Google Scholar 

  • Shao, J.Q. and Yang, S.Y., 2012, Does chemical index of alteration (CIA) reflect silicate weathering and monsoonal climate in the Changjiang River basin? Chinese Science Bulletin, 57, 1178–1187.

    Article  Google Scholar 

  • Shao, J., Yang, S., and Li, C., 2012, Chemical indices (CIA and WIP) as proxies for integrated chemical weathering in China: inferences from analysis of fluvial sediments. Sedimentary Geology, 265–266, 110–120.

    Article  Google Scholar 

  • Sharma, A. and Rajamani, V., 2000, Major element, REE, and other trace element behavior in amphibolite weathering under semi-arid conditions in southern India. The Journal of Geology, 108, 487–496.

    Article  Google Scholar 

  • Shikazono, N., Zakir, H., and Sudo, Y., 2008, Zinc contamination in river water and sediments at Taisyu Zn-Pb mine area, Tsushima Island, Japan. Journal of Geochemical Exploration, 98, 80–88.

    Article  Google Scholar 

  • Short, N.M., 1961, Geochemical variation in four residual soils. The Journal of Geology, 69, 534–571.

    Article  Google Scholar 

  • Singh, R.P., Upadhyay, V.K., and Das, A., 1987, Weathering potential index for rocks based on density and porosity measurements. Proceedings of the Indian Academy of Sciences — Earth and Planetary Sciences, 96, 239–247. https://doi.org/10.1007/BF02841616

    Google Scholar 

  • Su, N., Yang, S-Y., Wang, X.D., Bi, L., and Yang, C.F., 2015, Magnetic parameters indicate the intensity of chemical weathering developed on igneous rocks in China. Catena, 133, 328–341.

    Article  Google Scholar 

  • Sueoka, T., Lee, I.K., Huramatsu, M., and Imamura, S., 1985, Geomechanical properties and engineering classification for decomposed granite soils in Kaduna District, Nigeria. Proceedings of the 1st International Conference on Geomechanics in Tropical Lateritic and Saprolitic Soils, Brasilia, Feb. 11–14, 1, p. 175–186.

  • Takahashi, F. and Shimaoka, T., 2012, The weathering of municipal solid waste incineration bottom ash evaluated by some weathering indices for natural rock. Waste Management, 32, 2294–2305.

    Article  Google Scholar 

  • Torres-Alvarado, I.S. and Satir, M., 1998, Geochemistry of hydrothermally altered rocks from Los Azufres geothermal field, Mexico. Geofísica Internacional, 37, 201–213.

    Article  Google Scholar 

  • Véliz, H., Campos, E., Menzies, A., and Valdivia, L., 2017, Relationship between hydrothermal alteration index and geological attributes at Chuquicamata Cu-Mo porphyry deposit, Chile: alteration index Chuquicamata porphyry. Resource Geology, 67, 158–173.

    Article  Google Scholar 

  • Verma, S.P., 1984, Alkali and alkaline earth element geochemistry of Los Humeros caldera, Puebla, Mexico. Journal of Volcanology and Geothermal Research, 20, 21–40.

    Article  Google Scholar 

  • Verma, S.P., 2000, Geochemical evidence for a lithospheric source for magmas from Los Humeros caldera, Puebla, Mexico. Chemical Geology, 164, 35–60.

    Article  Google Scholar 

  • Verma, S.P., 2001, Geochemical evidence for a lithospheric source for magmas from Acoculco Caldera, Eastern Mexican Volcanic Belt. International Geology Review, 43, 31–51.

    Article  Google Scholar 

  • Verma, S.P. and Lopez, M., 1982, Geochemistry of Los Humeros Caldera, Puebla, Mexico. Bulletin of Volcanology, 45, 63–79.

    Article  Google Scholar 

  • Verma, S.P., Pandarinath, K., Bhutani, R., and Dash, J.K., 2018, Mineralogical, chemical, and Sr-Nd isotopic effects of hydrothermal alteration of near-surface rhyolite in the Los Azufres geothermal field, Mexico. Lithos, 322, 347–361.

    Article  Google Scholar 

  • Vogel, D.E., 1975, Precambrian weathering in acid metavolcanic rocks from the Superior Province, Ville Bond township, Southcentral Quebec. Canadian Journal of Earth Sciences, 12, 2080–2085.

    Article  Google Scholar 

  • Vogt, T., 1927, Sulitjelmafeltets geologi og petrografi. Norges Geolgiske Undersokelse, 121, 1–560. (in Norwegian with English abstract)

    Google Scholar 

  • Zhang, Y., Gao, J-F., Dongsheng, M., and Pan, J., 2018, The role of hydrothermal alteration in tungsten mineralization at the Dahutang tungsten deposit, South China. Ore Geology Reviews, 95, 1008–1027.

    Article  Google Scholar 

  • Zheng, Y.C., Gu, L., Tang, X., Wu, C., Li, C., and Liu, S., 2011, Geology and geochemistry of highly metamorphosed footwall alteration zones in the Hongtoushan volcanogenic massive sulfide deposit, Liaoning Province, China. Resource Geology, 61, 113–139.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kailasa Pandarinath.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Table S1.

Details of the rock samples from different rock formations selected for validation (1st–3rd columns) and for application (4th column) of chemical weathering indices in identification of the alteration status of the rocks

Table S2.

Details of the volcanic rock samples from the surface areas of the six geothermal fields of Mexico

Table S3.

Average values of the chemical weathering indices applied for the rock composition of six geothermal fields of Mexico

Supplementary DOC file with the details of the Chemical Weathering Indices

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandarinath, K. Application potential of chemical weathering indices in the identification of hydrothermally altered surface volcanic rocks from geothermal fields. Geosci J 26, 415–442 (2022). https://doi.org/10.1007/s12303-021-0042-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12303-021-0042-2

Key words

Navigation