Log in

Phytotoxicity of pesticides mancozeb and chlorpyrifos: correlation with the antioxidative defence system in Allium cepa

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Pesticides are a group of chemical substances which are widely used to improve agricultural production. However, these substances could be persistent in soil and water, accumulative in sediment or bio-accumulative in biota depending on their solubility, leading to different types of environmental pollution. The present study was done to assess the impact of pesticides-mancozeb and chlorpyrifos, via morphological and physiological parameters using Allium cepa test system. Phytotoxic effects of pesticides were examined via germination percentage, survival percentage, root and shoot length, root shoot length ratio, seedling vigor index, percentage of phytotoxicity and tolerance index. Oxidative stress on Allium seedlings caused by pesticides was also assessed by investigating the activity of antioxidative enzymes viz. catalase, peroxidase and superoxide dismutase. Correlation was worked out between morphological parameters and antioxidative enzymes to bring out the alliance between them. Mancozeb and chlorpyrifos concentrations were significantly and positively correlated with the activity of antioxidative enzymes and negatively correlated with morphological parameters. Significant positive correlation between various morphological parameters showed their interdependency. However, negative correlation was obtained between activity of antioxidative enzymes and morphological parameters. The enzymes however, showed positive correlation with each other. Based on our result we can conclude that all morphological parameters were adversely affected by the two pesticides as reflected by phytotoxicity in Allium. Their negative correlation with activity of antioxidative enzymes indicates that upregulation of antioxidative enzymes is not sufficient to overcome the toxic effect, thereby signifying the threat being caused by the regular use of these pesticides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abdollahi M, Ranjbar A, Shadnia S, Nikfar S, Rezaie A (2004) Pesticides and oxidative stress: a review. Med Sci Monit 10:141–147

    Google Scholar 

  • Abdul-Baki AA, Anderson JO (1973) Vigor determination in soyabean application of dairy manure on germination and emergence of some selected crops. Crop Sci 13:630–633

    Article  Google Scholar 

  • Akinci IE, Akinci S (2010) Effect of chromium toxicity on germination and early seedling growth in melon (Cucumis melo L.). Afr J Biotechnol 9(29):4589–4594

    CAS  Google Scholar 

  • Amin AW (2002) Cytotoxicity testing of sewage water treatment using Allium cepa chromosome aberration assay. Pak J Biol Sci 5:184–188

    Article  Google Scholar 

  • Anitha SR, Savitha G (2013) Impact of mancozeb stress on seedling growth, seed germination, chlorophyll and phenolic contents of rice cultivars. IJSR 4(7):292–296

    Google Scholar 

  • Bashir F, Siddiqi TO, Mahmooduzzafar Iqbal M (2007) The antioxidative response system in Glycine max (L.) Merr. exposed to deltamethrin, a synthetic pyrethroid insecticide. Environ Pollut 147:94–100

    Article  CAS  PubMed  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    Article  CAS  PubMed  Google Scholar 

  • Bolognesi C, Merlo FD (2011) Pesticides: human health effects. In: Nriagu JO (ed) Encyclopedia of environmental health. Elsevier, Burlington, USA, pp 438–453

    Chapter  Google Scholar 

  • Botías C, David A, Hill EM, Goulson D (2016) Contamination of wild plants near neonicotinoid seed-treated crops, and implications for non-target insects. Sci Total Environ 566–567:269–278

    Article  PubMed  Google Scholar 

  • Bowler C, Anmontagu M, Inze D (1992) Superoxide dismutase and stress tolerance: annual review plant physiology. Plant Mol Biol 43:83–116

    CAS  Google Scholar 

  • Calvelo PR, Monterroso C, Macias F (2010) Phytotoxicity of hexachlorocyclohexane: effect on germination and early growth of different plant species. Chemosphere 79:326

    Article  Google Scholar 

  • Chen Q, Zhang M, Shen S (2010) Effect of salt on malondialdehyde and antioxidant enzymes in seedling roots of Jerusalem artichoke (Helianthus tuberosus L.). Acta Physiol Plant 33:273–278

    Article  Google Scholar 

  • Chou CH, Chiang YC, Khan CI (1978) Impact of water pollution on crop growth in Taiwan. Bot Bull Acad Sinica 19:107–124

    CAS  Google Scholar 

  • Dey A, De JN (2012) Antioxidative potential of bryophytes: stress tolerance and commercial perspectives: a review. Pharmacologia 3:151–159

    Article  Google Scholar 

  • Dhanamanjuri W, Thoudam R, Dutta BK (2013) Effect of some pesticides (Fungicides) on the germination and growth of seeds/seedlings of some crop plants (i.e. Cicer arietinum and Zea Mays). Middle East J Sci Res 17(5):627–632

    CAS  Google Scholar 

  • Euler HV, Josephson K (1927) Uber Katalase. I. Justus Liebigs Annalen Der. Chemie 452:158–181

  • Faize M, Burgos L, Faize L, Piqueras A, Nicolas E, Barba- Espin G, Clemente-Moreno MJ, Alcobendas R, Artlip T, Hernandez JA (2011) Involvement of cytosolic ascorbate peroxidase and Cu/Zn-superoxide dismutase for improved tolerance against drought stress. J Exp Bot 62:2599–2613

    Article  CAS  PubMed  Google Scholar 

  • FICCI (2015) Ushering in the 2nd green revolution: role of crop protection chemicals. A report on Indian Agrochemical Industry, p 22. http://ficci.in/spdocument/20662/Agrochemicals-Knowledge-report.pdf

  • Finney DJ (1952) Probit analysis, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Gopi R, Jaleel CA, Sairam R, Lakshmanan GMA, Gomithinayagam M, Pannerselvem R (2007) Differential effects of hexaconazole and paclobutrazol on biomass, electrolyte leakage, lipid peroxidation and antioxidant potential of Daucus carota L. Colloids Surf B Biointerfaces 60:180–186

    Article  CAS  PubMed  Google Scholar 

  • Goswami MR, Banerjee P, Swarnakar S, Mukhopadhyay A (2013) Carbaryl mediated biochemical alterations in Eggplant (Solanum melongena L.). Int J Res Environ Sci Technol 3(2):51

    Google Scholar 

  • Habtamu A, Shelema M, Kedar R, Ebsa S (2013) Seed germination and seedling growth of Haricot bean (Phaseolus vulgaris) cultivars as influenced by copper sulphate. World Sci Res J 10:312–317

    Google Scholar 

  • Harnpicharnchai K, Chaiear N, Charerntanyarak L (2013) Residues of organophosphate pesticides used in vegetable cultivation in ambient air, surface water and soil in Bueng Niam Subdistrict, Khon Kaen, Thailand. Southeast Asian J Trop Med Public Health 44(6):1088

    CAS  PubMed  Google Scholar 

  • Jafari M, Salehi M, Ahmadi S, Asgari A, Abasnezhad M, Hajigholamali M (2012) The role of oxidative stress in diazinon-induced tissues toxicity in Wistar and Norway rats. Toxicol Mech Methods 22(8):638

    Article  CAS  PubMed  Google Scholar 

  • Jan S, Parween T, Siddiqi TO, Mahmooduzzafar (2012) Effect of gamma radiation on morphological, biochemical and physiological aspects of plants and plant products. Environ Rev 20:7–39

    Article  Google Scholar 

  • JanakiDevi V, Nagarani N, YokeshBabu M, Kumaraguru AK, Ramakritinan CM (2013) A study of proteotoxicity and genotoxicity induced by the pesticide and fungicide on marine invertebrate (Donax faba). Chemosphere 90(3):1158–1166

    Article  CAS  PubMed  Google Scholar 

  • Jiang L, Yang H (2009) Prometryne-induced oxidative stress and impact on antioxidant enzymes in wheat. Ecotoxicol Environ Saf 72:1687–1693

    Article  CAS  PubMed  Google Scholar 

  • Jianga L, Maa L, Suia Y, Hna SQ, Wua ZY, Fenga YX, Yanga H (2010) Effect of manure compost on the herbicide prometryne bioavailability to wheat plants. J Hazard Mater 184:337–344

    Article  Google Scholar 

  • Khan SM, Kour G (2007) Sub acute oral toxicity of chlorpyriphos and protective effect of green tea extract. Pestic Biochem Physiol 89:118–123

    Article  CAS  Google Scholar 

  • Khan H, Zeb A, Ali Z, Shah SM (2009) Impact of five insecticides on chickpea (Cicer arietinum L.) nodulation, yield and nitrogen fixing rhizospheric bacteria. Soil Environ 28:56–59

    CAS  Google Scholar 

  • Koornneef M, Bentsink L, Hilhorst H (2002) Seed dormancy and germination. Curr Opin Plant Biol 5(1):33

    Article  CAS  PubMed  Google Scholar 

  • Kumar NG, Nirmala P, Jayappa AH (2010) Effect of various methods of application of insecticides on the incidence of serpentine leaf miner, Liriomyza trifolii (burgess) and other pests in soybean. Karnataka J Agric Sci 23:130–132

    Google Scholar 

  • Luck H (1963) Peroxidase. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Academic Press Inc, New York, pp 895–897

    Google Scholar 

  • Mahmood Q, Bilal M, Jan S (2014) Herbicides, pesticides, and plant tolerance: an overview. Emerg Technol Manag Crop Stress Toleran 17:423–448

    Article  Google Scholar 

  • Mei X, Lin DH, Xu Y, Wu YY, Tu YY (2009) Effects of phenanthrene on chemical composition and enzyme activity in fresh tea leaves. Food Chem 115:569–573

    Article  CAS  Google Scholar 

  • Mishra V, Srivastava G, Prasad SM (2009) Antioxidant response of bitter gourd (Momordica charantia L.) seedlings to interactive effect of dimethoate and UVB irradiation. Sci Hortic 120:373–378

    Article  CAS  Google Scholar 

  • Moller P, Danielsen PH, Karottki DG, Jantzen K, Roursgaard M, Klingberg H, Jensen DM, Christophersen DV, Hemmingsen JG, Cao Y, Loft S (2014) Oxidative stress and inflammation generated DNA damage by exposure to air pollution particles. Mutat Res, Rev Mutat Res 762:133–166

    Article  Google Scholar 

  • Morimura T, Ohya T, Ikawa T (1996) Presence of ascorbate-peroxidizing enzymes in roots of Brassica campestris L. cv Komatsuna. Plant Sci 117:55–63

    Article  CAS  Google Scholar 

  • Moustafa GG, Ibrahim ZS, Hashimoto Y, Alkelch AM, Sakamoto KQ, Ishizuka M, Fujita S (2007) Testicular toxicity of profenofos in matured male rats. Arch Toxicol 81:875–881

    Article  CAS  PubMed  Google Scholar 

  • Mrema EJ, Rubino FM, Brambilla G, Moretto A, Tsatsakis AM, Colosio C (2013) Persistent organochlorinated pesticides and mechanisms of their toxicity. Toxicology 307:74–88

    Article  CAS  PubMed  Google Scholar 

  • Naksen W, Prapamontol T, Mangklabruks A, Chantara S, Thavornyutikarn P, Robson MG, Ryan PB, Barr DB, Panuwet P (2016) A single method for detecting 11 organophosphate pesticides in human plasma and breastmilk using GC-FPD. J Chromatogr B 1025:92–104

    Article  CAS  Google Scholar 

  • Nielson MH, Rank J (1994) Screening of toxicity and genotoxicity in waste water by the use of Allium test. Hereditas 121:249–254

    Article  Google Scholar 

  • Pandey KB, Rizvi SI (2010) Markers of oxidative stress in erythrocytes and plasma during aging in humans. Oxid Med Cell Longev 3:2–12

    Article  PubMed  PubMed Central  Google Scholar 

  • Parween T, Jan S, Mahmooduzzafar Fatma T (2011) Alteration in nitrogen metabolism and plant growth during different developmental stages of green gram (Vigna radiata L.) in response to chlorpyrifos. Acta Physiol Plant 33:2321–2328

    Article  CAS  Google Scholar 

  • Peixoto F, Alves-Fernandes D, Santos D, Fontaınhas-Fernandes A (2006) Toxicological effects of oxyfluorfen on oxidative stress enzymes in tilapia Oreochromis niloticus. Pestic Biochem Physiol 85:91–96

    Article  CAS  Google Scholar 

  • Scott SJ, Jones RA, William WA (1984) Review of data analysis methods for seed germination. Crop Sci 24(6):1192–1199

    Article  Google Scholar 

  • Singh G, Kaur D (2016) Studies on the antioxidative stress responses of fungicides carbendazim and mancozeb in seedlings of brassica (Brassica campestris L.). Int Res J Environ Sci 5(2):57–62

    CAS  Google Scholar 

  • Song NH, Yin X, Chen GF, Yang H (2007) Biological responses of wheat (Triticum aestivum) plants to the herbicide chlorotoluron in soils. Chemosphere 69:1779–1787

    Article  Google Scholar 

  • Songa EA, Okonkwo JO (2016) Recent approaches to improving selectivity and sensitivity of enzyme-based biosensors for organophosphorus pesticides: a review. Talanta 155:289–304

    Article  CAS  PubMed  Google Scholar 

  • Tevini M, Teramura AH (1989) UV-B effects on terrestrial plants. Photochem Photobiol 50:479–487

    Article  CAS  Google Scholar 

  • Tsaboula A, Papadakis EN, Vryzas Z, Kotopoulou A, Kintzikoglou K, Mourkidou EP (2016) Environmental and human risk hierarchy of pesticides: a prioritization method, based on monitoring, hazard assessment and environmental fate. Environ Int 91:78–93

    Article  CAS  PubMed  Google Scholar 

  • Turner RG, Marshal C (1972) Accumulation of zinc by subcellular root of Agrostis tannis Sibth. in relation of zinc tolerance. New Phytol 71:671–676

    Article  CAS  Google Scholar 

  • Venkateswara Rao J, Parvati K, Kavitha P, Jakka NM, Pallela R (2005) Effect of chlorpyrifos and monocrotophos on loco motor behavior and acetyl cholinesterase activity of subterranean termites, Odontotermes obesus. Pest Manag Sci 61:417–421

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Laird DA (2003) Abiotic transformation of chlorpyrifos oxon in chlorinated water. Environ Toxicol Chem 22:261–264

    Article  CAS  PubMed  Google Scholar 

  • Wu XY, Von Tiedemann A (2002) Impact of fungicides on active oxygen species and antioxidant enzymes in spring barley (Hordeum vulgare L.) exposed to ozone. Environ Pollut 116:37–47

    Article  CAS  PubMed  Google Scholar 

  • Wu GL, Cui EJ, Tao EL, Yang EH (2010) Fluroxypyr triggers oxidative damage by producing superoxide and hydrogen peroxide in rice (Oryza sativa). Ecotoxicology 19:24–132

    Article  Google Scholar 

  • Yildiztekin M, Kaya C, Tuna AL, Ashraf M (2015) Oxidative stress and antioxidative mechanisms in tomato (Solanum lycopersicum L.) plants sprayed with different pesticides. Pak J Bot 47(2):717–721

    CAS  Google Scholar 

  • Zhang GL, Chen WJ, Qiu LM, Sun GR, Dai QG, Zhang HC (2009) Physiological response to 124-trichlorobenzene stress of different rice genotypes. Acta Agron Sinica 35:733–740

    Article  CAS  Google Scholar 

  • Zou KH, Tuncali K, Silverman SG (2003) Correlation and simple linear regression. Radiology 227:617–622

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Authors thankfully acknowledge the University Grant Commission (UGC), India for financial assistance. FF and AK also acknowledge the Communication cell, Integral University for reviewing the manuscript and allotting manuscript communication number (IU/R&D/2017-MCN00050).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alka Srivastava.

Ethics declarations

Conflict of interest

All the authors contributed equally and declared that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fatma, F., Verma, S., Kamal, A. et al. Phytotoxicity of pesticides mancozeb and chlorpyrifos: correlation with the antioxidative defence system in Allium cepa . Physiol Mol Biol Plants 24, 115–123 (2018). https://doi.org/10.1007/s12298-017-0490-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-017-0490-3

Keywords

Navigation