Log in

Effect of water stress on antioxidant systems and oxidative parameters in fruits of tomato (Solanum lycopersicon L, cv. Micro-tom)

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

The effects of different levels of water stress on oxidative parameters (H2O2 and MDA), the total pool sizes of ascorbate, the activities of antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT), as well as the activities and relative transcript levels of the enzymes of ascorbate-glutathione cycle ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR) and glutathione reductase (GR) were studied in the fruit of tomato (Solanum lycopersicum L. cv. Micro-Tom). Plants were subjected to three levels of water stress (S50, S25 and S0) and fruits at different development stages were harvested after 3, 6 and 10 days of stress. Changes in H2O2 and MDA contents indicated that water stress induced oxidative stress in fruits. The concentrations of ascorbate (AsA) and dehydroascorbate (DHA) generally modified with water stress treatments. Moreover, changes in SOD and CAT activities and DHAR, MDHAR, APX and GR activities and relative transcript levels were dependent on the fruit development stage and the intensity and the duration of water stress. These results suggest that the response of antioxidant systems of tomato fruits to oxidative stress induced by water stress treatments was different depending on the fruit development stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aebi H (1984) Isolation, purification, characterization, and assay of antioxygenic enzymes: catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  • Ahmad P, Jaleel CA, Salem MA, Nabi G, Sharma S (2010) Roles of enzymatic and non-enzymatic antioxidants in plants during abiotic stress. Crit Rev Biotechnol 30(3):161–175

    Article  CAS  PubMed  Google Scholar 

  • Ahmad P, Nabi G, Jeleel CA, Umar S (2011) Free radical production, oxidative damage and antioxidant defense mechanisms in plants under abiotic stress. In: Ahmad P, Umar S (eds) Oxidative stress: role of antioxidants in plants. Studium Press, New Delhi, pp 19–53

    Google Scholar 

  • Allen RD (1995) Dissection of oxidative stress tolerance using transgenic plants. Plant Physiol 107:1049–1054

    CAS  PubMed  PubMed Central  Google Scholar 

  • Asada K (1999) The water–water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639

    Article  CAS  PubMed  Google Scholar 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bérczi A, Møller IM (1998) NADH-monodehydroascorbateoxido reductase is one of the redox enzymes in spinach leaf plasma membranes. Plant Physiol 116:1029–1036

    Article  PubMed Central  Google Scholar 

  • Bohnert HJ, Jensen RG (1996) Strategies for engineering water stress tolerance in plants. Trends Biotechnol 14:89–97

    Article  CAS  Google Scholar 

  • Borsani O, Diaz P, Agius MF, Valpuesta V, Monza J (2001) Water stress generates an oxidative stress through the induction of a specific Cu/Zn superoxide dismutase in Lotus corniculatus leaves. Plant Sci 161:757–763

    Article  CAS  Google Scholar 

  • Bowler C, Montagu MV, Inze D (1992) Superoxide dismutase and stress tolerance. Ann Rev Plant Physiol Plant Mol Biol 43:83–116

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of micrograms quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Chaves MM, Maroco JP, Periera S (2003) Understanding plant responses to drought from genes to the whole plant. Funct Plant Biol 30:239–264

    Article  CAS  Google Scholar 

  • Dalton DA, Baird LM, Langeberg L, Taugher CY, Anyan WR, Vance CP, Sarath G (1993) Subcellular-localization of oxygen defense enzymes in soybean (Glycine max L. Merr) root-nodules. Plant Physiol 102:481–489

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dhindsa RS, Plumb-Dhindsa P, Thorpe TA (1981) Leaf senescent: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J Exp Bot 32:93–101

    Article  CAS  Google Scholar 

  • Dodds GT, Trenholm L, Rajabipour A, Madramootoo CA, Norris ER (1997) Yield and quality of tomato fruit under water-table management. J Am Soc Hortic Sci 122:491–498

    Google Scholar 

  • Duan M, Feng HL, Wang LY, Li D, Meng QW (2012) Overexpression of thylakoidal ascorbate peroxidase shows enhanced resistance to chilling stress in tomato. J Plant Physiol 169:867–877

    Article  CAS  PubMed  Google Scholar 

  • Elkahoui S, Hernandez JA, Abdelly C, Ghrir R, Limam F (2005) Effect of salt on lipid peroxidation and antioxidant enzyme activities of Catharanthus roseus suspension cells. Plant Sci 168:607–613

    Article  CAS  Google Scholar 

  • Fidalgo F, Freitas R, Ferreira R, Pessoa AM, Teixeira J (2011) Solanum nigrum L. antioxidant defence system isozymes are regulated transcriptionally and posttranslationally in Cd-induced stress. Environ Exp Bot 72:312–319

    Article  CAS  Google Scholar 

  • Fornazier RF, Ferreira RR, Pereira GJG, Molina SMG, Smith RJ, Lea PJ, Azevedo RA (2002) Cadmium stress in sugarcane in callus culture effects on antioxidant enzymes plant cell. Tissue Org Cult 71:121–131

    Article  Google Scholar 

  • Foyer CH (1993) Ascorbic acid. In: Alscher RG, Hess JL (eds) Antioxidants in higher plants. CRC Press, Florida, pp 31–58

    Google Scholar 

  • Foyer CH, Noctor G (2005) Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ 28:1056–1071

    Article  CAS  Google Scholar 

  • Gill S, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Gomez LD, Noctor G, Knight M, Foyer CH (2004) Regulation of calcium signalling and gene expression by glutathione. J Exp Bot 55:1851–1859

    Article  CAS  PubMed  Google Scholar 

  • Horemans N, Foyer CH, Asard H (2000) Transport and action of ascorbate at the plasma membrane. Trends Plant Sci 5:263–267

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa T, Shigeoka S (2008) Recent advances in ascorbate biosynthesis and the physiological significance of ascorbate peroxidase in photosynthesizing organisms. Biosci Biotechnol Biochem 72:1143–1154

    Article  CAS  PubMed  Google Scholar 

  • Iturbe-Ormaetxe I, Escuredo PR, Arrese-Igor C, Becana M (1998) Oxidative damage in pea plants exposed to water deficit or paraquat. Plant Physiol 116:173–181

    Article  CAS  PubMed Central  Google Scholar 

  • Jaleel CA, Gopi R, Manivannan P, Panneerselvam R (2007) Responses of antioxidant defense system of Catharanthus roseus (L.) G. Don. to paclobutrazol treatment under salinity. Acta Physiol Plant 29:205–209

    Article  Google Scholar 

  • Jiménez A, Creissen G, Kular B, Firmin J, Robinson S, Verhoeten M, Mullineaux P (2002) Changes in oxidative processes and components of the antioxidant system during tomato fruit ripening. Planta 214:751–758

    Article  PubMed  Google Scholar 

  • Kampfenkel K, Van Montagu M, Inze D (1995) Extraction and determination of ascorbate and dehydroascorbate from plant tissue. Anal Biochem 225:165–167

    Article  CAS  PubMed  Google Scholar 

  • Kefeli VI (1981) Vitamins and some other representatives of non-hormonal plant growth regulator prikibiokhim. Microbiology 17:5–15

    CAS  Google Scholar 

  • Kerdnaimongkol K, Bhatia A, Jaly RJ, Woodson WR (1997) Oxidative stress and diurnal variation in chilling sensitivity of tomato seedlings. Amer Soc Hortic Sci 122:485–490

    CAS  Google Scholar 

  • Kim DW, Shibato J, Agrawal GK, Fujihara S, Iwahashi H, Kim DH, Shim IS, Rakwal R (2007) Gene transcription in the leaves of rice undergoing salt-induced morphological changes (Oryza sativa L.). Mol Cells 24:45–59

    CAS  PubMed  Google Scholar 

  • Knörzer OC, Durner J, Böger P (1996) Alterations in the antioxidative system of suspension-cultured soybean cells (Glycine max) induced by oxidative stress. Physiol Plant 97:388–396

    Article  Google Scholar 

  • Leonardis DS, Lorenzo DG, Borraccino G, Dipierro S (1995) A specific ascorbate free-radical reductaseisozyme participates in the regeneration of ascorbate for scavenging toxic oxygen species in potato-tuber mitochondria. Plant Physiol 109:847–851

    PubMed  PubMed Central  Google Scholar 

  • Manivannan P, Jaleel CA, Kishorekumar A, Sankar B, Somasundaram R, Sridharan R, Panneerselvam R (2007a) Drought stress induced changes in the biochemical parameters and photosynthetic pigments of cotton (Gossypium hirsutum L.). Indian J Appl Pure Biol 22:369–372

    CAS  Google Scholar 

  • Manivannan P, Jaleel CA, Kishorekumar A, Sankar B, Somasundaram R, Sridharan R, Panneerselvam R (2007b) Changes in antioxidant metabolism under drought stress in Vigna unguiculata (L.) Walp. Indian J Plant Physiol 12:133–137

    CAS  Google Scholar 

  • Manivannan P, Jaleel CA, Kishorekumar A, Sankar B, Somasundaram R, Sridharan R, Panneerselvam R (2007c) Changes in antioxidant metabolism of Vigna unguiculata (L.) Walp. by propiconazole under water deficit stress. Colloids Surf B Biointerfaces 57:69–74

    Article  CAS  PubMed  Google Scholar 

  • Mehlhorn H, Lelandais M, Korth HG, Foyer CH (1996) Ascorbate is the natural substrate for plant peroxidases. FEBS Lett 378:203–206

    Article  CAS  PubMed  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Zilinskas BA (1992) Molecular cloning and characterization of a gene encoding pea cytosolic ascorbate peroxidase. J Biol Chem 267:21802–21807

    CAS  PubMed  Google Scholar 

  • Mittova V, Volokita M, Guy M, Tal M (2000) Activities of SOD and the ascorbate-glutathione cycle enzymes in subcellular compartments in leaves and roots of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii. Physiol Plant 110:42–51

    Article  CAS  Google Scholar 

  • Murshed R, Lopez-Lauri F, Keller C, Monnet F, Sallanon H (2008a) Acclimation to drought stress enhances oxidative stress tolerance in Solanum lycopersicum L. fruits. Plant Stress 2:145–151

    Google Scholar 

  • Murshed R, Lopez-Lauri F, Sallanon H (2008b) Microplate quantification of enzymes of the plant ascorbate–glutathione cycle. Anal Biochem 383:320–322

    Article  CAS  PubMed  Google Scholar 

  • Navari-Izzo F, Quartacci MF, Sgherri CLM (1994) Intercellular membranes: kinetics of superoxide production and changes in thylakoids of resurrection plants upon dehydration and rehydration. Proc R Soc Edinb 102B:187–191

    Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: kee** active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, Jovanovic SV, Foyer CH (2000) Peroxide processing in photosynthesis: antioxidant coupling and redox signalling. Philos Trans R Soc London Ser 355B:1465–1475

    Article  Google Scholar 

  • Noctor G, Gomez L, Vanacker H, Foyer CH (2002) Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signalling. J Exp Bot 53:1283–1304

    Article  CAS  PubMed  Google Scholar 

  • Palatnik JF, Carrillo N, Valle EM (1999) The role of photosynthetic electron transport in the oxidative degradation of chloroplastic glutamine synthetase. Plant Physiol 121:471–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Purvis AC, Shewfelt RL, Gegogeine JW (1995) Superoxide production by mitochondria isolated from green bell pepper fruit. Plant Physiol 94:743–749

    Article  CAS  Google Scholar 

  • Rahman SML, Mackay WA, Quebedeaux B, Nawata E, Sakuratani T (2002) Superoxide dismutase, leaf water potential, relative water content, growth and yield of a drought-tolerant and a droughtsensitive tomato cultivars. Subtrop Plant Sci J 54:16–22

    Google Scholar 

  • Reddy AR, Chaitanya KV, Vivekanandan M (2004) Drought induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol 161:1189–1202

    Article  CAS  Google Scholar 

  • Sánchez-Rodríguez E, Rubio-Wilhelmi M, Blasco B, Leyva R, Romero L, Ruiz JM (2012) Antioxidant response resides in the shoot in reciprocal grafts of drought-tolerant and drought-sensitive cultivars in tomato under water stress. Plant Sci 188–189:89–96

    Article  PubMed  Google Scholar 

  • Sankar B, Jaleel CA, Manivannan P, Kishorekumar A, Somasundaram R, Panneerselvam R (2007) Effect of paclobutrazol on water stress amelioration through antioxidants and free radical scavenging enzymes in Arachis hypogaea L. Colloids Surf B Biointerfaces 60:229–235

    Article  CAS  PubMed  Google Scholar 

  • Scandalios J (1997) Molecular genetics of superoxide dismutases in plants. In: Scandalios J (ed) Oxidative stress and the molecular biology of antioxidant defenses. Cold Spring Harbor Laboratory Press, New York, pp 527–568

    Google Scholar 

  • Scebba F, Sebastiani L, Vitagliano C (2001) Activities of antioxidant enzymes during senescence of Prunus armeniaca leaves. Biol Plant 44:41–46

    Article  CAS  Google Scholar 

  • Shao HB, Chu LY, Wu G, Zhang JH, Lu ZH, Hu YC (2007) Changes of some anti-oxidative physiological indices under soil water deficits among 10 wheat (Triticum aestivum L.) genotypes at tillering stage. Colloids Surf B Biointerfaces 54:143–149

    Article  CAS  PubMed  Google Scholar 

  • Shaoyun Z (1997) The activities of protective enzymes of rice seedlings subjects to drought and their relationship to drought tolerance. J China Agric Univ 18:21–25

    Google Scholar 

  • Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y, Yoshimura K (2002) Regulation and function of ascorbate peroxidase isoenzymes. J Exp Bot 53:1305–1319

    Article  CAS  PubMed  Google Scholar 

  • Smirnoff N (1993) The role of active oxygen in the response to water deficit and desiccation. New Phytol 125:27–58

    Article  CAS  Google Scholar 

  • Sofo A, Dichio B, **loyannis C, Masia A (2004) Effects of different irradiance levels on some antioxidant enzymes and on malondialdehyde content during rewatering in olive tree. Plant Sci 166:293–302

    Article  CAS  Google Scholar 

  • Tambussi EA, Bartoli CG, Beltrano J, Guiamet JJ, Araus JL (2000) Oxidative damage to thylakoid proteins in water-stressed leaves of wheat (Triticum aestivum). Physiol Plant 108:398–404

    Article  CAS  Google Scholar 

  • Tanabe N, Yoshimura K, Kimura A, Yabuta Y, Shigeoka S (2007) Differential expression of alternatively spliced mRNAs of Arabidopsis SR protein homologs, atSR30 and atSR45a, in response to environmental stress. Plant Cell Physiol 48:1036–1049

    Article  CAS  PubMed  Google Scholar 

  • Van Breusegem F, Vranova E, Dat JF, Inze D (2001) The role of active oxygen species in plant signal transduction. Plant Sci 161:405–414

    Article  Google Scholar 

  • Yoshimura K, Yabuta Y, Ishikawa T, Shigeoka S (2000) Expression of spinach ascorbate peroxidise isoenzymes in response to oxidative stresses. Plant Physiol 123:223–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramzi Murshed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murshed, R., Lopez-Lauri, F. & Sallanon, H. Effect of water stress on antioxidant systems and oxidative parameters in fruits of tomato (Solanum lycopersicon L, cv. Micro-tom). Physiol Mol Biol Plants 19, 363–378 (2013). https://doi.org/10.1007/s12298-013-0173-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-013-0173-7

Keywords

Navigation