Log in

Brevibacterium limosum sp. nov., Brevibacterium pigmenatum sp. nov., and Brevibacterium atlanticum sp. nov., three novel dye decolorizing actinobacteria isolated from ocean sediments

  • Microbial Systematics and Evolutionary Microbiology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

An Erratum to this article was published on 01 November 2021

This article has been updated

Abstract

During a study of the marine actinobacterial biodiversity, a large number of Brevibacterium strains were isolated. Of these, five that have relatively low 16S rRNA gene similarity (98.5–99.3%) with validly published Brevibacterium species, were chosen to determine taxonomic positions. On the basis of 16S rRNA gene sequence analysis and BOX-PCR fingerprinting, strains o2T, YB235T, and WO024T were selected as representative strains. Genomic analyses, including average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH), clearly differentiated the three strains from each other and from their closest relatives, with values ranging from 82.8% to 91.5% for ANI and from 26.7% to 46.5% for dDDH that below the threshold for species delineation. Strains YB235T, WO024T, and o2T all exhibited strong and efficient decolorization activity in congo red (CR) dyes, moderate decolorization activity in toluidine blue (TB) dyes and poor decolorization in reactive blue (RB) dyes. Genes coding for peroxidases and laccases were identified and accounted for these strains’ ability to effectively oxidize a variety of dyes with different chemical structures. Mining of the whole genome for secondary metabolite biosynthesis gene clusters revealed the presence of gene clusters encoding for bacteriocin, ectoine, NRPS, siderophore, T3PKS, terpene, and thiopeptide. Based on the phylogenetic, genotypic and phenotypic data, strains o2T, YB235T and WO024T clearly represent three novel taxa within the genus Brevibacterium, for which the names Brevibacterium limosum sp. nov. (type strain o2T = JCM 33844T = MCCC 1A09961T), Brevibacterium pigmenatum sp. nov. (type strain YB235T = JCM 33843T = MCCC 1A09842T) and Brevibacterium atlanticum sp. nov. (type strain WO024T = JCM 33846T = MCCC 1A16743T) are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  • Anast, J.M., Dzieciol, M., Schultz, D.L., Wagner, M., Mann, E., and Schmitz-Esser, S. 2019. Brevibacterium from Austrian hard cheese harbor a putative histamine catabolism pathway and a plasmid for adaptation to the cheese environment. Sci. Rep.9, 6164.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Arndt, D., Grant, J.R., Marcu, A., Sajed, T., Pon, A., Liang, Y., and Wishart, D.S. 2016. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res.44, W16–W21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aziz, R.K., Bartels, D., Best, A.A., DeJongh, M., Disz, T., Edwards, R.A., Formsma, K., Gerdes, S., Glass, E.M., Kubal, M., et al. 2008. The RAST Server: rapid annotations using subsystems technology. BMC Genomics9, 75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Benjamin, L., Vancanneyt, M., Dawyndt, P., Cnockaert, M., Zhang, J., Huang, Y., Liu, Z., and Swings, J. 2004. BOX-PCR fingerprinting as a powerful tool to reveal synonymous names in the genus Streptomyces. emended descriptions are proposed for the species Streptomyces cinereorectus, S. fradiae, S. tricolor, S. colombiensis, S. filamentosus, S. vinaceus and S. phaeopurpureus. Syst. Appl. Microbiol.27, 84–92.

    Article  Google Scholar 

  • Bertelli, C., Laird, M.R., Williams, K.P., Simon Fraser University Research Computing Group, Lau, B.Y., Hoad, G., Winsor, G.L., and Brinkman, F.S.L. 2017. IslandViewer 4: expanded prediction of genomic islands for larger-scale datasets. Nucleic Acids Res.45, W30–W35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhadra, B., Raghukumar, C., Pindi, P.K., and Shivaji, S. 2008. Brevibacterium oceani sp. nov., isolated from deep-sea sediment of the Chagos Trench, Indian Ocean. Int. J. Syst. Evol. Microbiol.58, 57–60.

    Article  CAS  PubMed  Google Scholar 

  • Blin, K., Shaw, S., Steinke, K., Villebro, R., Ziemert, N., Lee, S.Y., Medema, M.H., and Weber, T. 2019. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res.47, W81–W87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonnarme, P., Psoni, L., and Spinnler, H.E. 2000. Diversity of L-methionine catabolism pathways in cheese-ripening bacteria. Appl. Environ. Microbiol.66, 5514–5517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breed, R.S. 1953. The families developed from Bacteriaceae Cohn with a description of the family Brevibacteriaceae. Riass. Commun. VI Congr. Int. Microbiol. Roma1, 10–15.

    Google Scholar 

  • Cerny, G. 1978. Studies on the aminopeptidase test for the distinction of Gram-negative from Gram-positive bacteria. European J. Appl. Microbiol. Biotechnol.5, 113–122.

    Article  CAS  Google Scholar 

  • Chatterjee, P., Samaddar, S., Niinemets, U., and Sa, T.M. 2018. Brevibacterium linens RS16 confers salt tolerance to Oryza sativa genotypes by regulating antioxidant defense and H+ ATPase activity. Microbiol. Res.215, 89–101.

    Article  CAS  PubMed  Google Scholar 

  • Chen, P., Zhang, L., Wang, J., Ruan, J., and Huang, Y. 2016. Brevibacterium sediminis sp. nov., isolated from deep-sea sediments from the Carlsberg and Southwest Indian Ridges. Int. J. Syst. Evol. Microbiol.66, 5268–5274.

    Article  CAS  PubMed  Google Scholar 

  • Chin, C.S., Alexander, D.H., Marks, P., Klammer, A.A., Drake, J., Heiner, C., Clum, A., Copeland, A., Huddleston, J., Eichler, E.E., et al. 2013. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat. Methods10, 563–569.

    Article  CAS  PubMed  Google Scholar 

  • Choi, E.J., Lee, S.H., Jung, J.Y., and Jeon, C.O. 2013. Brevibacterium jeotgali sp. nov., isolated from jeotgal, a traditional Korean fermented seafood. Int. J. Syst. Evol. Microbiol.63, 3430–3436.

    Article  CAS  PubMed  Google Scholar 

  • Collins, M.D., Farrow, J.A.E., Goodfellow, M., and Minnikin, D.E. 1983. Brevibacterium casei sp. nov. and Brevibacterium epidermidis sp. nov. Syst. Appl. Microbiol.4, 388–395.

    Article  CAS  PubMed  Google Scholar 

  • Collins, M.D., Jones, D., Keddie, R.M., and Sneath, P.H.A. 1980. Reclassification of Chromobacterium iodinum (Davis) in a redefined genus Brevibacterium (Breed) as Brevibacterium iodinum nom.rev.; comb.nov. Microbiology120, 1–10.

    Article  Google Scholar 

  • Couvin, D., Bernheim, A., Toffano-Nioche, C., Touchon, M., Michalik, J., Néron, B., Rocha, E.P.C., Vergnaud, G., Gautheret, D., and Pourcel, C. 2018. CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins. Nucleic Acids Res.46, W246–W251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Díez-Mendez, A., García-Fraile, P., Solano, F., and Rivas, R. 2019. The ant Lasius niger is a new source of bacterial enzymes with biotechnological potential for bleaching dye. Sci. Rep.9, 15217.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol.17, 368–376.

    Article  CAS  PubMed  Google Scholar 

  • Fitch, W.M. 1971. Toward defining the course of evolution: minimum change for a specific tree topology. Syst. Zool.20, 406–416.

    Article  Google Scholar 

  • Forgacs, E., Cserháti, T., and Oros, G. 2004. Removal of synthetic dyes from wastewaters: a review. Environ. Int.30, 953–971.

    Article  CAS  PubMed  Google Scholar 

  • Gavrish, E.Y., Krauzova, V.I., Potekhina, N.V., Karasev, S.G., Plotnikova, E.G., Altyntseva, O.V., Korosteleva, L.A., and Evtushenko, L.I. 2004. Three new species of Brevibacteria, Brevibacterium antiquum sp. nov., Brevibacterium aurantiacum sp. nov., and Brevibacterium permense sp. nov. Microbiology73, 176–183.

    Article  CAS  Google Scholar 

  • Goodfellow, M., Kämpfer, P., Busse, H.J., Trujillo, M.E., Suzuki, K., Ludwig, W., and Whitman, W.B. 2012. Bergey’s Manual of Systematic Bacteriology: Volume 5: The Actinobacteria. Springer, New York, USA.

    Book  Google Scholar 

  • Goris, J., Konstantinidis, K.T., Klappenbach, J.A., Coenye, T., Vandamme, P., and Tiedje, J.M. 2007. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int. J. Syst. Evol. Microbiol.57, 81–91.

    Article  CAS  PubMed  Google Scholar 

  • Heyrman, J., Verbeeren, J., Schumann, P., Devos, J., Swings, J., and De Vos, P. 2004. Brevibacterium picturae sp. nov., isolated from a damaged mural painting at the Saint-Catherine chapel (Castle Herberstein, Austria). Int. J. Syst. Evol. Microbiol.54, 1537–1541.

    Article  CAS  PubMed  Google Scholar 

  • Hyatt, D., Chen, G.L., LoCascio, P.F., Land, M.L., Larimer, F.W., and Hauser, L.J. 2010. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics11, 119.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ivanova, P.E., Christen, R., Alexeeva, Y.V., Zhukova, N.V., Gorshkove, N.M., Lysenko, A.M., Mikhailov, V.V., and Nicolau, D.V. 2004. Brevibacterium celere sp. nov., isolated from degraded thallus of a brown alga. Int. J. Syst. Evol. Microbiol.54, 2107–2111.

    Article  CAS  PubMed  Google Scholar 

  • Kaiser, P., Geyer, R., Surmann, P., and Fuhrmann, H. 2012. LC-MS method for screening unknown microbial carotenoids and isoprenoid quinones. J. Microbiol. Methods88, 28–34.

    Article  CAS  PubMed  Google Scholar 

  • Kanehisa, M., Sato, Y., and Morishima, K. 2016. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J. Mol. Biol.428, 726–731.

    Article  CAS  PubMed  Google Scholar 

  • Komagata, K. and Iizuka, H. 1964. New species of Brevibacterium isolated from rice. Nippon Nōgeikagaku Kaishi38, 496–502.

    Article  Google Scholar 

  • Kumar, A., İnce, İ.A., Katı, A., and Chakraborty, R. 2013. Brevibacterium siliguriense sp. nov., a facultatively oligotrophic bacterium isolated from river water. Int. J. Syst. Evol. Microbiol.63, 511–515.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, S., Stecher, G., and Tamura, K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol.33, 1870–1874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lagesen, K., Hallin, P., Rødland, E.A., Staerfeldt, H.H., Rognes, T., and Ussery, D.W. 2007. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res.35, 3100–3108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lane, D.J. 1991. 16S/23S rRNA sequencing. In Stackebrandt, E. and Goodfellow, M. (eds.), Nucleic Acid Techniques in Bacterial Systematic, pp. 115–175. John Wiley and Sons, New York, USA.

    Google Scholar 

  • Lechevalier, M.P. and Lechevalier, H. 1970. Chemical composition as a criterion in the classification of aerobic actinomycetes. Int. J. Syst. Bacteriol.20, 435–443.

    Article  CAS  Google Scholar 

  • Li, W.J., Xu, P., Schumann, P., Zhang, Y.Q., Pukall, R., Xu, L.H., Stackebrandt, E., and Jiang, C.L. 2007. Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia. Int. J. Syst. Evol. Microbiol.57, 1424–1428.

    Article  PubMed  Google Scholar 

  • Lim, S.H., Lee, Y.H., and Kang, H.W. 2013. Efficient recovery of lignocellulolytic enzymes of spent mushroom compost from oyster mushrooms, Pleurotus spp., and potential use in dye decolorization. Mycobiology41, 214–220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lowe, T.M. and Chan, P.P. 2016. tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res.44, 54–57.

    Article  CAS  Google Scholar 

  • McMullan, G., Meehan, C., Conneely, A., Kirby, N., Robinson, T., Nigam, P., Banat, I., Marchant, R., and Smyth, W. 2001. Microbial decolourisation and degradation of textile dyes. Appl. Microbiol. Biotechnol.56, 81–87.

    Article  CAS  PubMed  Google Scholar 

  • Meier-Kolthoff, J.P., Auch, A.F., Klenk, H.P., and Göker, M. 2013. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics14, 60.

    Article  PubMed  PubMed Central  Google Scholar 

  • Minnikin, D.E., O’Donnell, A.G., Goodfellow, M., Alderson, G., Athalye, M., Schaal, A., and Parlett, J.H. 1984. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J. Microbiol. Methods2, 233–241.

    Article  CAS  Google Scholar 

  • Minnikin, D.E., Patel, P.V., Alshamaony, L., and Goodfellow, M. 1977. Polar lipid composition in the classification of Nocardia and related bacteria. Int. J. Syst. Evol. Microbiol.27, 104–117.

    CAS  Google Scholar 

  • Murray, P.R., Baron, E.J., Pfaller, M.A., Tenover, F.C., and Yolken, R.H. 1999. Manual of Clinical Microbiology, 7th edn. American Society for Microbiology press, Washington DC, USA.

    Google Scholar 

  • Na, S.I., Kim, Y.O., Yoon, S.H., Ha, S.M., Baek, I., and Chun, J. 2018. UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J. Microbiol.56, 280–285.

    Article  CAS  PubMed  Google Scholar 

  • Olender, A., Rutyna, P., Niemcewicz, M., Bogut, A., Ciesielka, M., and Teresiński, G. 2020. Draft whole-genome sequence of Brevibacterium casei strain isolated from a bloodstream infection. Braz. J. Microbiol.51, 685–689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Overbeek, R., Olson, R., Pusch, G., Olsen, G., Davis, J., Disz, T., Edwards, R.A., Gerdes, S., Parrello, B., Shukla, M., et al. 2013. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res.42, D206–D214.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pascual, C. and Collins, M.D. 1999. Brevibacterium avium sp. nov., isolated from poultry. Int. J. Syst. Bacteriol.49, 1527–1530.

    Article  PubMed  Google Scholar 

  • Rattray, F.P. and Fox, P.F. 1999. Aspects of enzymology and biochemical properties of Brevibacterium linens relevant to cheese ripening: a review. J. Dairy Sci.82, 891–909.

    Article  CAS  PubMed  Google Scholar 

  • Roux, V. and Raoult, D. 2009. Brevibacterium massiliense sp. nov., isolated from a human ankle discharge. Int. J. Syst. Evol. Microbiol.59, 1960–1964.

    Article  PubMed  Google Scholar 

  • Saitou, N.M. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol.4, 406–425.

    CAS  PubMed  Google Scholar 

  • Sasser, M. 1990. Identification of bacteria through fatty acid analysis. In Klement, Z., Rudolph, K., and Sands, D.C. (eds.), Methods in Phytobacteriology, pp. 199–204. Akadémiai Kaidó, Budapest, Hungary.

    Google Scholar 

  • Simoes, F., Vale, P., Stephenson, T., and Soares, A. 2018. Understanding the growth of the bio-struvite production Brevibacterium antiquum in sludge liquors. Environ. Technol.39, 2278–2287.

    Article  CAS  PubMed  Google Scholar 

  • Solano, F., Lucas-Elío, P., López-Serrano, D., Fernández, E., and Sanchez-Amat, A. 2001. Dimethoxyphenol oxidase activity of different microbial blue multicopper proteins. FEMS Microbiol. Lett.204, 175–181.

    Article  CAS  PubMed  Google Scholar 

  • Staneck, J.L. and Roberts, G.D. 1974. Simplified approach to identification of aerobic actinomycetes by Thin-Layer Chromatography. Appl. Microbiol.28, 226–231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, W., Zhang, Z., Ni, H., Yang, X., Li, Q., and Li, L. 2012. Decolorization of industrial synthetic dyes using engineered Pseudomonas putida cells with surface-immobilized bacterial laccase. Microb. Cell Fact.11, 75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin, X., Yang, Y., Wang, S., and Zhang, G. 2015. Virgibacillus oceani sp. nov. isolated from ocean sediment. Int. J. Syst. Evol. Microbiol.65, 159–164.

    Article  CAS  PubMed  Google Scholar 

  • Yoon, S.H., Ha, S.M., Lim, J., Kwon, S., and Chun, J. 2017. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek110, 1281–1286.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Scientific Research Foundation of Third Institute of Oceanography, MNR (No. 2019011) and China Ocean Mineral Resources R&D Association (COMRA) Program (No. DY135-B2-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaiyun Zhang.

Ethics declarations

The authors declare that there are no conflicts of interest.

Additional information

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pei, S., Niu, S., **e, F. et al. Brevibacterium limosum sp. nov., Brevibacterium pigmenatum sp. nov., and Brevibacterium atlanticum sp. nov., three novel dye decolorizing actinobacteria isolated from ocean sediments. J Microbiol. 59, 898–910 (2021). https://doi.org/10.1007/s12275-021-1235-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-021-1235-0

Keywords

Navigation