Log in

Recent progress of cobalt-based electrocatalysts for water splitting: Electron modulation, surface reconstitution, and applications

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Electrocatalytic water splitting is an essential and effective means to produce green hydrogen energy structures, so it is necessary to develop non-precious metal catalysts to replace precious metals. Cobalt-based catalysts present effective alternatives due to the diverse valence states, adjustable electronic structures, and plentiful components. In this review, the catalytic mechanisms of hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) for electrocatalytic water splitting are described. Then, the synthesis strategies of various cobalt-based catalysts are systematically summarized, followed by the relationships between the structure and performance clarified. Subsequently, the effects of d-band center and spin regulation for cobalt-based catalysts are also discussed. Furthermore, the dynamic electronic and structural devolution of cobalt-based catalysts are elucidated by combining a series of in-situ characterizations. Finally, we highlight the challenges and future developed directions of cobalt-based catalysts for electrocatalytic water splitting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yang, G. C.; Jiao, Y. Q.; Yan, H. J.; **e, Y.; Tian, C. G.; Wu, A. P.; Wang, Y.; Fu, H. G. Unraveling the mechanism for paired electrocatalysis of organics with water as a feedstock. Nat. Commun. 2022, 13, 3125.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lu, X. H.; **e, S. L.; Yang, H.; Tong, Y. X.; Ji, H. B. Photoelectrochemical hydrogen production from biomass derivatives and water. Chem. Soc. Rev. 2014, 43, 7581–7593.

    CAS  PubMed  Google Scholar 

  3. Ling, Y. Y.; Wang, H. S.; Liu, M. K.; Wang, B.; Li, S.; Zhu, X. C.; Shi, Y. X.; **a, H. D.; Guo, K.; Hao, Y. et al. Sequential separation-driven solar methane reforming for H2 derivation under mild conditions. Energy Environ. Sci. 2022, 15, 1861–1871.

    CAS  Google Scholar 

  4. Quan, L.; Li, S. H.; Zhao, Z. P.; Liu, J. Q.; Ran, Y.; Cui, J. Y.; Lin, W.; Yu, X. L.; Wang, L.; Zhang, Y. H. et al. Hierarchically assembling CoFe Prussian blue analogue nanocubes on CoP nanosheets as highly efficient electrocatalysts for overall water splitting. Small Methods 2021, 5, 2100125.

    CAS  Google Scholar 

  5. Riyajuddin, S.; Azmi, K.; Pahuja, M.; Kumar, S.; Maruyama, T.; Bera, C.; Ghosh, K. uperr-hydrophilic hierarchical Ni-foam-graphene-carbon nanotubes-Ni2P-CuP2 nono-architecture as efficient electrocatalyst for overall water splitting. ACS Nano 2021, 15, 5586–5599.

    CAS  PubMed  Google Scholar 

  6. Zhai, Y. Y.; Ren, X. R.; Wang, B. L.; Liu, S. Z. High-entropy catalyst—A novel platform for electrochemical water splitting. Adv. Funct. Mater. 2022, 32, 2207536.

    CAS  Google Scholar 

  7. Wu, H.; Huang, Q. X.; Shi, Y. Y.; Chang, J. W.; Lu, S. Y. Electrocatalytic water splitting: Mechanism and electrocatalyst design. Nano Res. 2023, 16, 9142–9157.

    ADS  Google Scholar 

  8. Yan, H. J.; **e, Y.; Wu, A. P.; Cai, Z. C.; Wang, L.; Tian, C. G.; Zhang, X. M.; Fu, H. G. Anion-modulated HER and OER activities of 3D Ni-V-based interstitial compound heterojunctions for high-efficiency and stable overall water splitting. Adv. Mater. 2019, 31, 1901174.

    Google Scholar 

  9. Wang, T. H.; Tao, L.; Zhu, X. R.; Chen, C.; Chen, W.; Du, S. Q.; Zhou, Y. Y.; Zhou, B.; Wang, D. D.; **e, C. et al. Combined anodic and cathodic hydrogen production from aldehyde oxidation and hydrogen evolution reaction. Nat. Catal. 2021, 5, 66–73.

    Google Scholar 

  10. Wu, A. P.; **e, Y.; Ma, H.; Tian, C. G.; Gu, Y.; Yan, H. J.; Zhang, X. M.; Yang, G. Y.; Fu, H. G. Integrating the active OER and HER components as the heterostructures for the efficient overall water splitting. Nano Energy 2018, 44, 353–363.

    ADS  CAS  Google Scholar 

  11. Li, Y. J.; Zhang, H. C.; Jiang, M.; Zhang, Q.; He, P. L.; Sun, X. M. 3D self-supported Fe-doped Ni2P nanosheet arrays as bifunctional catalysts for overall water splitting. Adv. Funct. Mater. 2017, 27, 1702513.

    Google Scholar 

  12. Zhou, X.; Mo, Y. X.; Yu, F.; Liao, L. L.; Yong, X. R.; Zhang, F. M.; Li, D. Y.; Zhou, Q.; Sheng, T.; Zhou, H. Q. Engineering active iron sites on nanoporous bimetal phosphide/nitride heterostructure array enabling robust overall water splitting. Adv. Funct. Mater. 2023, 33, 2209465.

    CAS  Google Scholar 

  13. Majumdar, A.; Dutta, P.; Sikdar, A.; Lee, H.; Ghosh, D.; Jha, S. N.; Tripathi, S.; Oh, Y.; Maiti, U. N. Impact of atomic rearrangement and single atom stabilization on MoSe2@NiCo2Se4 heterostructure catalyst for efficient overall water splitting. mmall 2022, 18, 2200622.

    CAS  Google Scholar 

  14. Gong, Y. N.; Zhong, W. H.; Li, Y.; Qiu, Y. Z.; Zheng, L. R.; Jiang, J.; Jiang, H. L. Regulating photocatalysis by spin-state manipulation of cobalt in covalent organic frameworks. J. Am. Chem. Soc. 2020, 142, 16723–16731.

    CAS  PubMed  Google Scholar 

  15. Kim, N. I.; Sa, Y. J.; Yoo, T. S.; Choi, S. R.; Afzal, R. A.; Choi, T.; Seo, Y. S.; Lee, K. S.; Hwang, J. Y.; Choi, W. S. et al. Oxygen-deficient triple perovskites as highly active and durable bifunctional electrocatalysts for oxygen electrode reactions. Sci. Adv. 2018, 4, eaap9360.

    ADS  PubMed  PubMed Central  Google Scholar 

  16. Gu, W. L.; Hu, L. Y.; Shang, C. S.; Li, J.; Wang, E. K. Enhancement of the hydrogen evolution performance by finely tuning the morphology of Co-based catalyst without changing chemical composition. Nano Res. 2019, 12, 191–196.

    CAS  Google Scholar 

  17. Ji, L. L.; Wang, J. Y.; Teng, X.; Meyer, T. J.; Chen, Z. F. CoP nanoframes as bifunctional electrocatalysts for efficient overall water splitting. ACS Catal. 2020, 10, 412–419.

    CAS  Google Scholar 

  18. Yang, Z. K.; Zhao, C. M.; Qu, Y. T.; Zhou, H.; Zhou, F. Y.; Wang, J.; Wu, Y. E.; Li, Y. D. Trifunctional self-supporting cobalt-embedded carbon nanotube films for ORR, OER, and HER triggered by solid diffusion from bulk metal. Adv. Mater. 2019, 31, 1808043

    Google Scholar 

  19. Li, J.; Gao, X.; Li, Z. Z.; Wang, J. H.; Zhu, L.; Yin, C.; Wang, Y.; Li, X. B.; Liu, Z. F.; Zhang, J. et al. Superhydrophilic graphdiyne accelerates interfacial mass/electron transportation to boost electrocatalytic and photoelectrocatalytic water oxidation activity. Adv. Funct. Mater. 2019, 29, 1808079.

    Google Scholar 

  20. Zaman, W. Q.; Sun, W.; Tariq, M.; Zhou, Z. H.; Farooq, U.; Abbas, Z.; Cao, L. M.; Yang, J. Iridium substitution in nickel cobaltite renders high mass specific OER activity and durability in acidic media. Appl. Catal. B Environ. 2019, 244, 295–302.

    CAS  Google Scholar 

  21. Lu, Y.; Fan, D. Q.; Chen, Z. P.; **ao, W. P.; Cao, C. C.; Yang, X. F. Anchoring Co3O4 nanoparticles on MXene for efficient electrocatalytic oxygen evolution. Sci. Bull. 2020, 65, 460–466.

    CAS  Google Scholar 

  22. **ao, Z. H.; Wang, Y.; Huang, Y. C.; Wei, Z. X.; Dong, C. L.; Ma, J. M.; Shen, S. H.; Li, Y. F.; Wang, S. Y. Filling the oxygen vacancies in Co3O4 with phosphorus: An ultra-efficient electrocatalyst for overall water splitting. Energy Environ. Sci. 2017, 10, 2563–2569.

    CAS  Google Scholar 

  23. Li, Z. J.; Wang, Z. Y.; **, S. B.; Zhao, X. X.; Sun, T.; Li, J.; Yu, W.; Xu, H. M.; Herng, T. S.; Hai, X. et al. Tuning the spin density of cobalt single-atom catalysts for efficient oxygen evolution. ACS Nano 2021, 15, 7105–7113.

    CAS  PubMed  Google Scholar 

  24. Yan, X. Y.; Biemolt, J.; Zhao, K.; Zhao, Y.; Cao, X. J.; Yang, Y.; Wu, X. Y.; Rothenberg, G.; Yan, N. A membrane-free flow electrolyzer operating at high current density using earth-abundant catalysts for water splitting. Nat. Commun. 2021, 12, 4143.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhou, J. Q.; Yu, L.; Zhou, Q. C.; Huang, C. Q.; Zhang, Y. L.; Yu, B.; Yu, Y. Ultrafast fabrication of porous transition metal foams for efficient electrocatalytic water splitting. Appl. Catal. B Environ. 2021, 288, 120002.

    CAS  Google Scholar 

  26. Yu, X. W.; Zhao, J.; Johnsson, M. Interfacial engineering of nickel hydroxide on cobalt phosphide for alkaline water electrocatalysis. Adv. Funct. Mater. 2021, 31, 2101578.

    CAS  Google Scholar 

  27. Song, Y. Y.; Cheng, J. L.; Liu, J.; Ye, Q.; Gao, X.; Lu, J. J.; Cheng, Y. L. Modulating electronic structure of cobalt phosphide porous nanofiber by ruthenium and nickel dual do** for highly-efficiency overall water splitting at high current density. Appl. Catal. B Environ. 2021, 298, 120488.

    CAS  Google Scholar 

  28. Zhu, T.; Liu, S. H.; Huang, B.; Shao, Q.; Wang, M.; Li, F.; Tan, X. Y.; Pi, Y. C.; Weng, S. C.; Huang, B. L. et al. High-performance diluted nickel nanoclusters decorating ruthenium nanowires for pH-universal overall water splitting. Energy Environ. Sci. 2021, 14, 3194–3202.

    CAS  Google Scholar 

  29. **e, X. H.; Song, M.; Wang, L. G.; Engelhard, M. H.; Luo, L. L.; Miller, A.; Zhang, Y. Y.; Du, L.; Pan, H. L.; Nie, Z. M. et al. Electrocatalytic hydrogen evolution in neutral pH solutions: Dual-phase synergy. ACS Catal. 2019, 9, 8712–8718.

    CAS  Google Scholar 

  30. Lao, M. M.; Li, P.; Jiang, Y. Z.; Pan, H. G.; Dou, S. X.; Sun, W. P. From fundamentals and theories to heterostructured electrocatalyst design: An in-depth understanding of alkaline hydrogen evolution reaction. Nano Energy 2022, 98, 107231.

    CAS  Google Scholar 

  31. Sun, F.; Tang, Q.; Jiang, D. E. Theoretical advances in understanding and designing the active sites for hydrogen evolution reaction. ACS Catal. 2022, 12, 8404–8433.

    CAS  Google Scholar 

  32. Nerskov, J. K.; Bligaard, T.; Logadottir, A.; Kitchin, J. R.; Chen, J. G.; Pandelov, S.; Stimming, U. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 2005, 152, J23–J26.

    Google Scholar 

  33. Zhang, Q.; Jiang, Z.; Tackett, B. M.; Denny, S. R.; Tian, B. Y.; Chen, X.; Wang, B.; Chen, J. G. Trends and descriptors of metal-modified transition metal carbides for hydrogen evolution in alkaline electrolyte. ACS Catal. 2019, 9, 2415–2422.

    CAS  Google Scholar 

  34. Lin, Y.; Cui, X. J.; Zhao, Y. L.; Liu, Z. C.; Zhang, G. X.; Pan, Y. Heterojunction interface editing in Co/NiCoP nanospheres by oxygen atoms decoration for synergistic accelerating hydrogen and oxygen evolution electrocatalysis. Nano Res. 2023, 16, 8765–8772.

    ADS  CAS  Google Scholar 

  35. Gong, T. Y.; Liu, Y.; Cui, K.; Xu, J. L.; Hou, L. R.; Xu, H. W.; Liu, R. C.; Deng, J. L.; Yuan, C. Z. Binary molten salt in situ synthesis of sandwich-structure hybrids of hollow β-Mo2C nanotubes and N-doped carbon nanosheets for hydrogen evolution reaction. Carbon Energy, in press, https://doi.org/10.1002/cey2.349.

  36. Skúlason, E.; Tripkovic, V.; Björketun, M. E.; Gudmundsdóttir, S.; Karlberg, G.; Rossmeisl, J.; Bligaard, T.; Jónsson, H.; Nerskov, J. K. Modeling the electrochemical hydrogen oxidation and evolution reactions on the basis of density functional theory calculations. J. Phys. Chem. C 2010, 114, 18182–18197.

    Google Scholar 

  37. Fei, H. L.; Dong, J. C.; Arellano-Jiménez, M. J.; Ye, G. L.; Kim, N. D.; Samuel, E. L. G.; Peng, Z. W.; Zhu, Z.; Qin, F.; Bao, J. M. et al. Atomic cobalt on nitrogen-doped graphene for hydrogen generation. Nat. Commun. 2015, 6, 8668.

    ADS  CAS  PubMed  Google Scholar 

  38. Chen, Z. L.; Wu, R. B.; Liu, Y.; Ha, Y.; Guo, Y. H.; Sun, D. L.; Liu, M.; Fang, F. Ultrafine Co nanoparticles encapsulated in carbon-nanotubes-grafted graphene sheets as advanced electrocatalysts for the hydrogen evolution reaction. Adv. Mater. 2018, 30, 1802011.

    Google Scholar 

  39. Chen, M.; Hu, L. H.; Xu, L.; Wei, J. L.; Wu, P.; Guan, G. Q.; Wang, T. J.; Ma, Y. F. Synergistically tuning surface states of hierarchical MoC by Pt-N dual-do** engineering for optimizing hydrogen evolution activity. Small Methods 2023, 7, 2300308.

    CAS  Google Scholar 

  40. Guo, H.; Wu, A. P.; **e, Y.; Yan, H. J.; Wang, D. X.; Wang, L.; Tian, C. G. 2D porous molybdenum nitride/cobalt nitride heterojunction nanosheets with interfacial electron redistribution for effective electrocatalytic overall water splitting. J. Mater. Chem. A 2021, 9, 8620–8629.

    CAS  Google Scholar 

  41. Zhang, B. Y.; Chen, L. L.; Zhang, Z. N.; Li, Q.; Khangale, P.; Hildebrandt, D.; Liu, X. Y.; Feng, Q. L.; Qiao, S. L. Modulating the band structure of metal coordinated Salen COFs and an in situ constructed charge transfer heterostructure for electrocatalysis hydrogen evolution. Adv. Sci. (Weinh.) 2022, 9, 2105912.

    CAS  PubMed  Google Scholar 

  42. Wexler, R. B.; Martirez, J. M. P.; Rappe, A. M. Chemical pressure-driven enhancement of the hydrogen evolving activity of Ni2P from nonmetal surface do** interpreted via machine learning. J. Am. Chem. Soc. 2018, 140, 4678–4683.

    CAS  PubMed  Google Scholar 

  43. Kong, F. Y.; Wu, A. P.; Wang, S. Y.; Zhang, X. H.; Tian, C. G.; Fu, H. G. The “mediated molecular”-assisted construction of Mo2N islands dispersed on Co-based nanosheets for high-efficient electrocatalytic hydrogen evolution reaction. Nano Res. 2023, 16, 10857–10866.

    ADS  CAS  Google Scholar 

  44. Han, D.; Du, G. H.; Wang, Y. T.; Jia, L. N.; Zhao, W. Q.; Su, Q. M.; Ding, S. K.; Zhang, M.; Xu, B. S. Chemical energy-driven lithiation preparation of defect-rich transition metal nanostructures for electrocatalytic hydrogen evolution. Small 2022, 18, 2202779.

    CAS  Google Scholar 

  45. Zhang, J.; Wang, T.; Liu, P.; Liu, S. H.; Dong, R. H.; Zhuang, X. D.; Chen, M. W.; Feng, X. L. Engineering water dissociation sites in MoS2 nanosheets for accelerated electrocatalytic hydrogen production. Energy Environ. Sci. 2016, 9, 2789–2793.

    CAS  Google Scholar 

  46. Alsabban, M. M.; Eswaran, M. K.; Peramaiah, K.; Wahyudi, W.; Yang, X. L.; Ramalingam, V.; Hedhili, M. N.; Miao, X. H.; Schwingenschlögl, U.; Li, L. J. et al. Unusual activity of rationally designed cobalt phosphide/oxide heterostructure composite for hydrogen production in alkaline medium. ACS Nano 2022, 16, 3906–3916.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Xu, K.; Ding, H.; Zhang, M. X.; Chen, M.; Hao, Z. K.; Zhang, L. D.; Wu, C. Z.; **e, Y. Regulating water-reduction kinetics in cobalt phosphide for enhancing HER catalytic activity in alkaline solution. Adv. Mater. 2017, 29, 1606980.

    Google Scholar 

  48. Zheng, J.; Sheng, W. C.; Zhuang, Z. B.; Xu, B. J.; Yan, Y. S. Universal dependence of hydrogen oxidation and evolution reaction activity of platinum-group metals on pH and hydrogen binding energy. Sci. Adv. 2016, 2, e1501602.

    ADS  PubMed  PubMed Central  Google Scholar 

  49. Li, P.; Jiang, Y. L.; Hu, Y. C.; Men, Y. N.; Liu, Y. W.; Cai, W. B.; Chen, S. L. Hydrogen bond network connectivity in the electric double layer dominates the kinetic pH effect in hydrogen electrocatalysis on Pt. Nat. Catal. 2022, 5, 900–911.

    CAS  Google Scholar 

  50. Ledezma-Yanez, I.; Wallace, W. D. Z.; Sebastián-Pascual, P.; Climent, V.; Feliu, J. M.; Koper, M. T. M. Interfacial water reorganization as a pH-dependent descriptor of the hydrogen evolution rate on platinum electrodes. Nat. Energy 2017, 2, 17231.

    Google Scholar 

  51. Guo, D. Z.; Li, X.; Jiao, Y. Q.; Yan, H. J.; Wu, A. P.; Yang, G. C.; Wang, Y.; Tian, C. G.; Fu, H. G. A dual-active Co-CoO heterojunction coupled with Ti3C2-MXene for highly-performance overall water splitting. Nano Res. 2022, 15, 238–247.

    ADS  CAS  Google Scholar 

  52. Liu, X.; Wang, L.; Yu, P.; Tian, C. G.; Sun, F. F.; Ma, J. Y.; Li, W.; Fu, H. G. A stable bifunctional catalyst for rechargeable zinc-air batteries: Iron-cobalt nanoparticles embedded in a nitrogen-doped 3D carbon matrix. Angew. Chem., Int. Ed. 2018, 57, 16166–16170.

    CAS  Google Scholar 

  53. Liu, J. Z.; Ji, Y. F.; Nai, J. W.; Niu, X. G.; Luo, Y.; Guo, L.; Yang, S. H. Ultrathin amorphous cobalt-vanadium hydr(oxy)oxide catalysts for the oxygen evolution reaction. Energy Environ. Sci. 2018, 11, 1736–1741.

    CAS  Google Scholar 

  54. Zhao, T. W.; Shen, X. J.; Wang, Y.; Hocking, R. K.; Li, Y. B.; Rong, C. L.; Dastafkan, K.; Su, Z.; Zhao, C. In situ reconstruction of V-doped Ni2P pre-catalysts with tunable electronic structures for water oxidation. Adv. Funct. Mater. 2021, 31, 2100614.

    CAS  Google Scholar 

  55. Chen, Z. J.; Zheng, R. J.; Gras, M.; Wei, W.; Lota, G.; Chen, H.; Ni, B. J. Tuning electronic property and surface reconstruction of amorphous iron borides via W-P co-do** for highly efficient oxygen evolution. Appl. Catal. B Environ. 2021, 288, 120037.

    CAS  Google Scholar 

  56. Wang, C. H.; Wang, Y.; Yang, H. C.; Zhang, Y. J.; Zhao, H. J.; Wang, Q. B. Revealing the role of electrocatalyst crystal structure on oxygen evolution reaction with nickel as an example. Small 2018, 14, 1802895.

    Google Scholar 

  57. Kim, U.; Lee, S.; Koo, D.; Choi, Y.; Kim, H.; Son, E.; Baik, J. M.; Han, Y. K.; Park, H. Crystal facet and electronic structure modulation of perovskite oxides for water oxidation. ACS Energy Lett. 2023, 8, 1575–1583.

    CAS  Google Scholar 

  58. Wang, X. P.; **, S. B.; Huang, P. R.; Du, Y. H.; Zhong, H. Y.; Wang, Q.; Borgna, A.; Zhang, Y. W.; Wang, Z. B.; Wang, H. et al. Pivotal role of reversible NiO6 geometric conversion in oxygen evolution. Nature 2022, 611, 702–708.

    ADS  CAS  PubMed  Google Scholar 

  59. Liang, Q. H.; Brocks, G.; Bieberle-Hütter, A. Oxygen evolution reaction (OER) mechanism under alkaline and acidic conditions. J. Phys. Energy 2021, 3, 026001.

    ADS  CAS  Google Scholar 

  60. Zhang, L. J.; Jang, H.; Liu, H. H.; Kim, M. G.; Yang, D. J.; Liu, S. G.; Liu, X. E.; Cho, J. Sodium- decorated amorphous/crystalline RuO2 with rich oxygen vacancies: A robust pH-universal oxygen evolution electrocatalyst. Angew. Chem., Int. Ed. 2021, 60, 18821–18829.

    CAS  Google Scholar 

  61. Zheng, T. T.; Shang, C. Y.; He, Z. H.; Wang, X. Y.; Cao, C.; Li, H. L.; Si, R.; Pan, B. C.; Zhou, S. M.; Zeng, J. Intercalated iridium diselenide electrocatalysts for efficient pH-universal water splitting. Angew. Chem., Int. Ed. 2019, 58, 14764–14769.

    CAS  Google Scholar 

  62. Dionigi, F.; Zeng, Z. H.; Sinev, I.; Merzdorf, T.; Deshpande, S.; Lopez, M. B.; Kunze, S.; Zegkinoglou, I.; Sarodnik, H.; Fan, D. X. et al. In-situ structure and catalytic mechanism of NiFe and CoFe layered double hydroxides during oxygen evolution. Nat. Commun. 2020, 11, 2522

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  63. Man, I. C.; Su, H. Y.; Calle-Vallejo, F.; Hansen, H. A.; Martínez, J. I.; Inoglu, N. G.; Kitchin, J.; Jaramillo, T. F.; Nerskov, J. K.; Rossmeisl, J. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 2011, 3, 1159–1165.

    CAS  Google Scholar 

  64. Zhang, X. H.; Chen, Q. F.; Deng, J. T.; Xu, X. Y.; Zhan, J. R.; Du, H. Y.; Yu, Z. Y.; Li, M. X.; Zhang, M. T.; Shao, Y. H. Identifying metal-oxo/peroxo intermediates in catalytic water oxidation by in situ electrochemical mass spectrometry. J. Am. Chem. Soc. 2022, 144, 17748–17752.

    CAS  PubMed  Google Scholar 

  65. Su, H.; Zhou, W. L.; Zhou, W.; Li, Y. L.; Zheng, L. R.; Zhang, H.; Liu, M. H.; Zhang, X. X.; Sun, X.; Xu, Y. Z. et al. In-situ spectroscopic observation of dynamic-coupling oxygen on atomically dispersed iridium electrocatalyst for acidic water oxidation. Nat. Commun. 2021, 12, 6118

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wang, W. B.; Yang, Y.; Zhao, Y.; Wang, S. Z.; Ai, X. M.; Fang, J. K.; Liu, Y. W. Multi- scale regulation in S, N co-incorporated carbon encapsulated Fe-doped Co9S8 achieving efficient water oxidation with low overpotential. Nano Res. 2022, 15, 872–880.

    ADS  CAS  Google Scholar 

  67. Zhao, X.; Zheng, X. R.; Lu, Q.; Li, Y.; **ao, F. P.; Tang, B.; Wang, S. X.; Yu, D. W.; Rogach, A. Electrocatalytic enhancement mechanism of cobalt single atoms anchored on different MXene substrates in oxygen and hydrogen evolution reactions. EcoMat. 2023, 5, e12293

    CAS  Google Scholar 

  68. Zhang, R.; Wei, Z. H.; Ye, G. Y.; Chen, G. J.; Miao, J. J.; Zhou, X. H.; Zhu, X. W.; Cao, X. Q.; Sun, X. N. “d-Elertron complementation induced V-Co phosphide for efficient overall water splitting. Adv. Energy Mater. 2021, 11, 2101758

    CAS  Google Scholar 

  69. Huang, W. Z.; Li, J. T.; Liao, X. B.; Lu, R. H.; Ling, C. H.; Liu, X.; Meng, J. S.; Qu, L. B.; Lin, M. T.; Hong, X. F. et al. Ligand modulation of active sites to promote electrocatalytic oxygen evolution. Adv. Mater. 2022, 34, 2200270.

    CAS  Google Scholar 

  70. Hibbert, D. B.; Churchill, C. R. Kinetics of the electrochemical evolution of isotopically enriched gases. Part 2.—18O16O evolution on NiCo2O4 and LixCo3−xO4 in alkaline solution. J. Chem. Soc. Faraday Trans. 1, 1984, 80, 1965–1975.

    CAS  Google Scholar 

  71. Harzandi, A. M.; Shadman, S.; Nissimagoudar, A. S.; Kim, D. Y.; Lim, H. D.; Lee, J. H.; Kim, M. G.; Jeong, H. Y.; Kim, Y.; Kim, K. S. Ruthenium core-shell engineering with nickel single atoms for selective oxygen evolution via nondestructive mechanism. Adv. Energy Mater. 2021, 11, 2003448.

    CAS  Google Scholar 

  72. Shi, Z. P.; Wang, Y.; Li, J.; Wang, X.; Wang, Y. B.; Li, Y.; Xu, W. L.; Jiang, Z.; Liu, C. P.; **ng, W. et al. Confined Ir single sites with triggered lattice oxygen redox: Toward boosted and sustained water oxidation catalysis. Joule 2021, 5, 2164–2176.

    CAS  Google Scholar 

  73. Huang, Z. F.; Song, J. J.; Du, Y. H.; **, S. B.; Dou, S.; Nsanzimana, J. M. V.; Wang, C.; Xu, Z. J.; Wang, X. Chemical and structural origin of lattice oxygen oxidation in Co–Zn oxyhydroxide oxygen evolution electrocatalysts. Nat. Energy 2019, 4, 329–338.

    ADS  CAS  Google Scholar 

  74. Wang, C.; Zhai, P. L.; **a, M. Y.; Wu, Y. Z.; Zhang, B.; Li, Z. W.; Ran, L.; Gao, J. F.; Zhang, X. M.; Fan, Z. Z. et al. Engineering lattice oxygen activation of iridium clusters stabilized on amorphous bimetal borides array for oxygen evolution reaction. Angew. Chem., Int. Ed. 2021, 60, 27126–27134.

    CAS  Google Scholar 

  75. Liu, M.; Ji, Y. J.; Li, Y. Y.; An, P. F.; Zhang, J.; Yan, J. Q.; Liu, S. Z. Single- atom do** and high-valence state for synergistic enhancement of NiO electrocatalytic water oxidation. Small 2021, 17, 2102448.

    CAS  Google Scholar 

  76. Wang, Y.; Yang, R.; Ding, Y. J.; Zhang, B.; Li, H.; Bai, B.; Li, M. R.; Cui, Y.; **ao, J. P.; Wu, Z. S. Unraveling oxygen vacancy site mechanism of Rh-doped RuO2 catalyst for long-lasting acidic water oxidation. Nat. Commun. 2023, 14, 1412.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  77. Yoo, J. S.; Rong, X.; Liu, Y. S.; Kolpak, A. M. Role of lattice oxygen participation in understanding trends in the oxygen evolution reaction on perovskites. ACS Catal. 2018, 8, 4628–4636.

    CAS  Google Scholar 

  78. Guo, H. Q.; Yang, Y. L.; Yang, G. M.; Cao, X. J.; Yan, N.; Li, Z. S.; Chen, E.; Tang, L. N.; Peng, M. L.; Shi, L. et al. Ex situ reconstruction-shaped Ir/CoO/perovskite heterojunction for boosted water oxidation reaction. ACS Catal. 2023, 13, 5007–5019

    CAS  PubMed  PubMed Central  Google Scholar 

  79. **ao, K.; Wang, Y. F.; Wu, P. Y.; Hou, L. P.; Liu, Z. Q. Activating lattice oxygen in spinel ZnCo2O4 through filling oxygen vacancies with fluorine for electrocatalytic oxygen evolution. Angew. Chem., Int. Ed. 2023, 62, e202301408.

    CAS  Google Scholar 

  80. Wen, Y. Z.; Chen, P. N.; Wang, L.; Li, S. Y.; Wang, Z. Y.; Abed, J.; Mao, X. N.; Min, Y. M.; Dinh, C. T.; Luna, P. D. et al. Stabilizing highly active Ru sites by suppressing lattice oxygen participation in acidic water oxidation. J. Am. Chem. Soc. 2021, 143, 6482–6490.

    CAS  PubMed  Google Scholar 

  81. Li, X. N.; Cheng, Z. X.; Wang, X. L. Understanding the mechanism of the oxygen evolution reaction with consideration of spin. Electrochem. Energ. Rev. 2021, 4, 136–145.

    CAS  Google Scholar 

  82. Ling, T.; Yan, D. Y.; Wang, H.; Jiao, Y.; Hu, Z. P.; Zheng, Y.; Zheng, L. R.; Mao, J.; Liu, H.; Du, X. W. et al. Activating cobalt(II) oxide nanorods for efficient electrocatalysis by strain engineering. Nat. Commun. 2017, 8, 1509.

    ADS  PubMed  PubMed Central  Google Scholar 

  83. Yu, X. X.; Yu, Z. Y.; Zhang, X. L.; Li, P.; Sun, B.; Gao, X. C.; Yan, K.; Liu, H.; Duan, Y.; Gao, M. R. et al. Highly disordered cobalt oxide nanostructure induced by sulfur incorporation for efficient overall water splitting. Nano Energy 2020, 71, 104652.

    CAS  Google Scholar 

  84. Li, J. M.; Li, J.; Ren, J.; Hong, H.; Liu, D. X.; Liu, L. Z.; Wang, D. H. Electric-field- treated Ni/Co3O4 film as high-performance bifunctional electrocatalysts for efficient overall water splitting. Nano-Micro Lett. 2022, 14, 148.

    ADS  CAS  Google Scholar 

  85. Cheng, G. H.; Kou, T. Y.; Zhang, J.; Si, C. H.; Gao, H.; Zhang, Z. H. O22−/O functionalized oxygen-deficient Co3O4 nanorods as high performance supercapacitor electrodes and electrocatalysts towards water splitting. Nano Energy 2017, 38, 155–166

    CAS  Google Scholar 

  86. Hung, S. F.; Zhu, Y. P.; Tzeng, G. Q.; Chen, H. C.; Hsu, C. S.; Liao, Y. F.; Ishii, H.; Hiraoka, N.; Chen, H. M. In situ spatially coherent identification of phosphide-based catalysts: Crystallographic latching for highly efficient overall water electrolysis. ACS Energy Lett. 2019, 4, 2813–2820

    CAS  Google Scholar 

  87. Liu, M.; Kong, L. J.; Wang, X. M.; He, J.; Zhang, J. J.; Zhu, J.; Bu, X. H. Deciphering of advantageous electrocatalytic water oxidation behavior of metal-organic framework in alkaline media. Nano Res. 2021, 14, 4680–4688.

    ADS  CAS  Google Scholar 

  88. Tran-Phu, T.; Daiyan, R.; Leverett, J.; Fusco, Z.; Tadich, A.; Di Bernardo, I.; Kiy, A.; Truong, T. N.; Zhang, Q. R.; Chen, H. J. et al. Understanding the activity and stability of flame-made Co3O4 spinels: A route towards the scalable production of highly performing OER electrocatalysts. Chem. Eng. J. 2022, 429, 132180.

    CAS  Google Scholar 

  89. Zhou, J.; Zhang, L. J.; Huang, Y. C.; Dong, C. L.; Lin, H. J.; Chen, C. T.; Tjeng, L. H.; Hu, Z. W. Voltage- and time-dependent valence state transition in cobalt oxide catalysts during the oxygen evolution reaction. Nat. Commun. 2020, 11, 1984.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  90. **, Q. Y.; Ren, B. W.; Li, D. Q.; Cui, H.; Wang, C. X. In situ promoting water dissociation kinetic of Co based electrocatalyst for unprecedentedly enhanced hydrogen evolution reaction in alkaline media. Nano Energy 2018, 49, 14–22

    CAS  Google Scholar 

  91. Jiang, L. W.; Huang, Y.; Zou, Y.; Meng, C.; **ao, Y.; Liu, H.; Wang, J. J. Boosting the stability of oxygen vacancies in α-Co(OH)2 nanosheets with coordination polyhedrons as rivets for high-performance alkaline hydrogen evolution electrocatalyst. Adv. Energy Mater. 2022, 12, 2202351.

    CAS  Google Scholar 

  92. Haase, F. T.; Bergmann, A.; Jones, T. E.; Timoshenko, J.; Herzog, A.; Jeon, H. S.; Rettenmaier, C.; Cuenya, B. R. Size effects and active state formation of cobalt oxide nanoparticles during the oxygen evolution reaction. Nat. Energy 2022, 7, 765–773.

    CAS  Google Scholar 

  93. Kuang, M.; Zhang, J. M.; Liu, D. B.; Tan, H. T.; Dinh, K. N.; Yang, L.; Ren, H.; Huang, W. J.; Fang, W.; Yao, J. D. et al. Amorphous/crystalline heterostructured cobalt-vanadium-iron (Oxy)hydroxides for highly efficient oxygen evolution reaction. Adv. Energy Mater. 2020, 10, 2002215.

    CAS  Google Scholar 

  94. Liu, J. Z.; Nai, J. W.; You, T. T.; An, P. F.; Zhang, J.; Ma, G. S.; Niu, X. G.; Liang, C. Y.; Yang, S. H.; Guo, L. The flexibility of an amorphous cobalt hydroxide nanomaterial promotes the electrocatalysis of oxygen evolution reaction. Small 2018, 14, 1703514.

    Google Scholar 

  95. Moysiadou, A.; Lee, S.; Hsu, C. S.; Chen, H. M.; Hu, X. L. Mechanism of oxygen evolution catalyzed by cobalt oxyhydroxide: Cobalt superoxide species as a key intermediate and dioxygen release as a rate-determining step. J. Am. Chem. Soc. 2020, 142, 11901–11914.

    CAS  PubMed  Google Scholar 

  96. Wang, S. H.; Jiang, Q.; Ju, S. H.; Hsu, C. S.; Chen, H. M.; Zhang, D.; Song, F. Identifying the geometric catalytic active sites of crystalline cobalt oxyhydroxides for oxygen evolution reaction. Nat. Commun. 2022, 13, 6650.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  97. Zhou, J.; Wang, Y.; Su, X. Z.; Gu, S. Q.; Liu, R. D.; Huang, Y. B.; Yan, S.; Li, J.; Zhang, S. Electrochemically accessing ultrathin Co(oxy)-hydroxide nanosheets and operando identifying their active phase for the oxygen evolution reaction. Energy Environ. Sci. 2019, 12, 739–746.

    CAS  Google Scholar 

  98. Rajan, A. G.; Martirez, J. M. P.; Carter, E. A. Facet-independent oxygen evolution activity of pure β-NiOOH: Different chemistries leading to similar overpotentials. J. Am. Chem. Soc. 2020, 142, 3600–3612.

    Google Scholar 

  99. Chen, Z. Y.; Song, Y.; Cai, J. Y.; Zheng, X. S.; Han, D. D.; Wu, Y. S.; Zang, Y. P.; Niu, S. W.; Liu, Y.; Zhu, J. F. et al. Tailoring the d-band centers enables Co4N nanosheets to Be highly active for hydrogen evolution catalysis. Angew. Chem., Int. Ed. 2018, 57, 5076–5080.

    CAS  Google Scholar 

  100. Yao, N.; Li, P.; Zhou, Z. R.; Zhao, Y. M.; Cheng, G. Z.; Chen, S. L.; Luo, W. Synergistically tuning water and hydrogen binding abilities over Co4N by Cr do** for exceptional alkaline hydrogen evolution electrocatalysis. Adv. Energy Mater. 2019, 9, 1902449.

    CAS  Google Scholar 

  101. Guo, D. Y.; Wan, Z. X.; Li, Y.; **, B.; Wang, C. X. TiN@Co5.47N composite material constructed by atomic layer deposition as reliable electrocatalyst for oxygen evolution reaction. Adv. Funct. Mater. 2021, 31, 2008511.

    CAS  Google Scholar 

  102. Chen, Z. L.; Ha, Y.; Liu, Y.; Wang, H.; Yang, H. Y.; Xu, H. B.; Li, Y. J.; Wu, R. B. In situ formation of cobalt nitrides/graphitic carbon composites as efficient bifunctional electrocatalysts for overall water splitting. ACSAppl. Mater. Interfaces 2018, 10, 7134–7144.

    CAS  Google Scholar 

  103. Shu, X. X.; Chen, S.; Chen, S.; Pan, W.; Zhang, J. T. Cobalt nitride embedded holey N-doped graphene as advanced bifunctional electrocatalysts for Zn-air batteries and overall water splitting. Carbon 2020, 157, 234–243.

    CAS  Google Scholar 

  104. Guo, X.; Wan, X.; Liu, Q. T.; Li, Y. C.; Li, W. W.; Shui, J. L. Phosphated IrMo bimetallic cluster for efficient hydrogen evolution reaction. eScience 2022, 2, 304–310.

    Google Scholar 

  105. Popczun, E. J.; Read, C. G.; Roske, C. W.; Lewis, N. S.; Schaak, R. E. Highly active electrocatalysis of the hydrogen evolution reaction by cobalt phosphide nanoparticles. Angew. Chem., Int. Ed. 2014, 53, 5427–5430.

    CAS  Google Scholar 

  106. Zhang, W.; Han, N.; Luo, J. S.; Han, X.; Feng, S. H.; Guo, W.; **e, S. J.; Zhou, Z. Y.; Subramanian, P.; Wan, K. et al. Critical role of phosphorus in hollow structures cobalt-based phosphides as bifunctional catalysts for water splitting. Small 2022, 18, 2103561.

    CAS  Google Scholar 

  107. Li, H.; Li, Q.; Wen, P.; Williams, T. B.; Adhikari, S.; Dun, C. C.; Lu, C.; Itanze, D.; Jiang, L.; Carroll, D. L. et al. Retracted: Colloidal cobalt phosphide nanocrystals as trifunctional electrocatalysts for overall water splitting powered by a zinc-air battery. Adv. Mater. 2018, 30, 1705796.

    Google Scholar 

  108. Kanan, M. W.; Nocera, D. G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 2008, 321, 1072–1075.

    ADS  CAS  PubMed  Google Scholar 

  109. Kim, H.; Park, J.; Park, I.; **, K.; Jerng, S. E.; Kim, S. H.; Nam, K. T.; Kang, K. Coordination tuning of cobalt phosphates towards efficient water oxidation catalyst. Nat. Commun. 2015, 6, 8253.

    ADS  CAS  PubMed  Google Scholar 

  110. Qi, J.; Lin, Y. P.; Chen, D. D.; Zhou, T. H.; Zhang, W.; Cao, R. Autologous cobalt phosphates with modulated coordination sites for electrocatalytic water oxidation. Angew. Chem., Int. Ed. 2020, 59, 8917–8921.

    CAS  Google Scholar 

  111. Shao, Y.; **ao, X.; Zhu, Y. P.; Ma, T. Y. Single-crystal cobalt phosphate nanosheets for biomimetic oxygen evolution in neutral electrolytes. Angew. Chem., Int. Ed. 2019, 58, 14599–14604.

    CAS  Google Scholar 

  112. Huang, S. C.; Meng, Y. Y.; He, S. M.; Goswami, A.; Wu, Q. L.; Li, J. H.; Tong, S. F.; Asefa, T.; Wu, M. M. N-, O-, and S-tridoped carbon-encapsulated Co9S8 nanomaterials: Efficient bifunctional electrocatalysts for overall water splitting. Adv. Funct. Mater. 2017, 27, 1606585.

    Google Scholar 

  113. Wang, Q.; Xu, H.; Qian, X. Y.; He, G. Y.; Chen, H. Q. Sulfur vacancies engineered self-supported Co3S4 nanoflowers as an efficient bifunctional catalyst for electrochemical water splitting. Appl. Catal. B Environ. 2023, 322, 122104.

    CAS  Google Scholar 

  114. Wu, F.; Yang, R.; Lu, S. S.; Du, W.; Zhang, B.; Shi, Y. M. Unveiling partial transformation and activity origin of sulfur vacancies for hydrogen evolution. ACS Energy Lett. 2022, 7, 4198–4203.

    CAS  Google Scholar 

  115. Shen, S. J.; Lin, Z. P.; Song, K.; Wang, Z. P.; Huang, L. A.; Yan, L. H.; Meng, F. Q.; Zhang, Q. H.; Gu, L.; Zhong, W. W. Reversed active sites boost the intrinsic activity of graphene-like cobalt selenide for hydrogen evolution. Angew. Chem., Int. Ed. 2021, 66, 12360–12365.

    Google Scholar 

  116. Fan, K.; Zou, H. Y.; Lu, Y.; Chen, H.; Li, F. S.; Liu, J. X.; Sun, L. C.; Tong, L. P.; Toney, M. F.; Sui, M. L. et al. Direct observation of structural evolution of metal chalcogenide in electrocatalytic water oxidation. ACS Nano 2018, 12, 12369–12379.

    CAS  PubMed  Google Scholar 

  117. Suntivich, J.; May, K. J.; Gasteiger, H. A.; Goodenough, J. B.; Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 2011, 334, 1383–1385.

    ADS  CAS  PubMed  Google Scholar 

  118. Chen, P. Z.; Xu, K.; Tao, S.; Zhou, T. P.; Tong, Y.; Ding, H.; Zhang, L. D.; Chu, W. S.; Wu, C. Z.; **e, Y. Phase-transformation engineering in cobalt diselenide realizing enhanced catalytic activity for hydrogen evolution in an alkaline medium. Adv. Mater. 2016, 28, 7527–7532.

    CAS  PubMed  Google Scholar 

  119. Liang, L.; Cheng, H.; Lei, F. C.; Han, J.; Gao, S.; Wang, C. M.; Sun, Y. F.; Qamar, S.; Wei, S. Q.; **e, Y. Metallic single-unit-cell orthorhombic cobalt diselenide atomic layers: Robust water-electrolysis catalysts. Angew. Chem., Int. Ed. 2015, 54, 12004–12008.

    CAS  Google Scholar 

  120. Liu, Y.; Feng, Q. G.; Liu, W.; Li, Q.; Wang, Y. C.; Liu, B.; Zheng, L. R.; Wang, W.; Huang, L.; Chen, L. M. et al. Boosting interfacial charge transfer for alkaline hydrogen evolution via rational interior Se modification. Nano Energy 2021, 81, 105641.

    CAS  Google Scholar 

  121. Anantharaj, S.; Ede, S. R.; Sakthikumar, K.; Karthick, K.; Mishra, S.; Kundu, S. Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe, Co, and Ni: A review. ACS Catal. 2016, 6, 8069–8097.

    CAS  Google Scholar 

  122. Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single- atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641.

    CAS  PubMed  Google Scholar 

  123. Hossain, M. D.; Liu, Z. J.; Zhuang, M. H.; Yan, X. X.; Xu, G. L.; Gadre, C. A.; Tyagi, A.; Abidi, I. H.; Sun, C. J.; Wong, H. et al. Rational design of graphene-supported single atom catalysts for hydrogen evolution reaction. Adv. Energy Mater. 2019, 9, 1803689.

    Google Scholar 

  124. Liu, X. H.; Deng, Y. C.; Zheng, L. R.; Kesama, M. R.; Tang, C.; Zhu, Y. F. Engineering low-coordination single-atom cobalt on graphitic carbon nitride catalyst for hydrogen evolution. ACS Catal. 2022, 12, 5517–5526.

    CAS  Google Scholar 

  125. Liu, R.; Gong, Z. C.; Liu, J. B.; Dong, J. C.; Liao, J. W.; Liu, H.; Huang, H. K.; Liu, J. J.; Yan, M. M.; Huang, K. et al. Design of aligned porous carbon films with single-atom Co-N-C sites for high-current-density hydrogen generation. Adv. Mater. 2021, 33, 2103533.

    CAS  Google Scholar 

  126. Wu, J. B.; Zhou, H.; Li, Q.; Chen, M.; Wan, J.; Zhang, N.; **ong, L. K.; Li, S.; **a, B. Y.; Feng, G. et al. Densely populated isolated single Co-N site for efficient oxygen electrocatalysis. Adv. Energy Mater. 2019, 9, 1900149.

    Google Scholar 

  127. Sun, X. P.; Sun, S. X.; Gu, S. Q.; Liang, Z. F.; Zhang, J. X.; Yang, Y. Q.; Deng, Z.; Wei, P.; Peng, J.; Xu, Y. et al. High-performance single atom bifunctional oxygen catalysts derived from ZIF-67 superstructures. Nano Energy 2019, 61, 245–250.

    CAS  Google Scholar 

  128. Yan, L.; Zhang, B.; Zhu, J. L.; Zhao, S. Z.; Li, Y. Y.; Zhang, B.; Jiang, J. J.; Ji, X.; Zhang, H. Y.; Shen, P. K. Chestnut-like copper cobalt phosphide catalyst for all-pH hydrogen evolution reaction and alkaline water electrolysis. J. Mater. Chem. A 2019, 7, 14271–14279.

    CAS  Google Scholar 

  129. Li, X. J.; Zhang, H. K.; Li, X.; Hu, Q.; Deng, C.; Jiang, X. X.; Yang, H. P.; He, C. X. Janus heterostructure of cobalt and iron oxide as dual-functional electrocatalysts for overall water splitting. Nano Res. 2023, 16, 2245–2251.

    ADS  CAS  Google Scholar 

  130. **, H. H.; Yu, R. H.; Hu, C. X.; Ji, P. X.; Ma, Q. L.; Liu, B. S.; He, D. P.; Mu, S. C. Size- controlled engineering of cobalt metal catalysts through a coordination effect for oxygen electrocatalysis. Appl. Catal. B Environ. 2022, 317, 121766.

    CAS  Google Scholar 

  131. Liu, H. L.; Li, Z. H.; Hu, J.; Qiu, Z. L.; Liu, W.; Lu, J. G.; Yin, J. G. Self- supported cobalt oxide electrocatalysts with hierarchical chestnut burr-like nanostructure for efficient overall water splitting. Chem. Eng. J. 2022, 435, 134995.

    CAS  Google Scholar 

  132. Zhang, X.; Yu, P.; **ng, G. Y.; **e, Y.; Zhang, X. X.; Zhang, G. Y.; Sun, F. F.; Wang, L. Iron single atoms-assisted cobalt nitride nanoparticles to strengthen the cycle life of rechargeable Zn-air battery. Small 2022, 18, 2205228.

    CAS  Google Scholar 

  133. Hou, C. C.; Zou, L. L.; Wang, Y.; Xu, Q. MOF-mediaeed fabrication of a porous 3D superstructure of carbon nanosheets decorated with ultrafine cobalt phosphide nanoparticles for efficient electrocatalysis and zinc-air batteries. Angew. Chem., Int. Ed. 2020, 59, 21360–21366.

    CAS  Google Scholar 

  134. Wu, H.; Jiang, H.; Yang, Y. Q.; Hou, C. Y.; Zhao, H. T.; **ao, R.; Wang, H. Z. Cobalt nitride nanoparticle coated hollow carbon spheres with nitrogen vacancies as an electrocatalyst for lithium-sulfur batteries. J. Mater. Chem. A 2020, 8, 14498–14505.

    CAS  Google Scholar 

  135. Li, X.; Surkus, A. E.; Rabeah, J.; Anwar, M.; Dastigir, S.; Junge, H.; Brückner, A.; Beller, M. Cobalt single-atom catalysts with high stability for selective dehydrogenation of formic acid. Angew. Chem., Int. Ed. 2020, 59, 15849–15854.

    CAS  Google Scholar 

  136. Tong, Y. L.; Xu, J. Y.; Jiang, H.; Gao, F.; Lu, Q. Y. Thickness-control of ultrathin two-dimensional cobalt hydroxide nanosheets with enhanced oxygen evolution reaction performance. Chem. Eng. J. 2017, 316, 225–231.

    CAS  Google Scholar 

  137. Li, D.; Baydoun, H.; Verani, C. N.; Brock, S. L. Efficient water oxidation using CoMnP nanoparticles. J. Am. Chem. Soc. 2016, 138, 4006–4009.

    CAS  PubMed  Google Scholar 

  138. Wan, J. W.; Zhao, Z. H.; Shang, H. S.; Peng, B.; Chen, W. X.; Pei, J. J.; Zheng, L. R.; Dong, J. C.; Cao, R.; Sarangi, R. et al. In situ phosphatizing of triphenylphosphine encapsulated within metal-organic frameworks to design atomic Co1-P1N3 interfacial structure for promoting catalytic performance. J. Am. Chem. Soc. 2020, 142, 8431–8439.

    CAS  PubMed  Google Scholar 

  139. Huang, J. B.; Hao, M. Y.; Mao, B. G.; Zheng, L. R.; Zhu, J.; Cao, M. H. The underlying molecular mechanism of fence engineering to break the activity-stability trade-off in catalysts for the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2022, 61, e202114899.

    CAS  Google Scholar 

  140. Zhang, X. L.; Hu, S. J.; Zheng, Y. R.; Wu, R.; Gao, F. Y.; Yang, P. P.; Niu, Z. Z.; Gu, C.; Yu, X. X.; Zheng, X. S. et al. Polymorphic cobalt diselenide as extremely stable electrocatalyst in acidic media via a phase-mixing strategy. Nat. Commun. 2019, 10, 5338.

    ADS  PubMed  PubMed Central  Google Scholar 

  141. Du, P. W.; Kokhan, O.; Chapman, K. W.; Chupas, P. J.; Tiede, D. M. Elucidating the domain structure of the cobalt oxide water splitting catalyst by X-ray pair distribution function analysis. J. Am. Chem. Soc. 2012, 134, 11096–11099.

    CAS  PubMed  Google Scholar 

  142. Babar, P.; Lokhande, A.; Shin, H. H.; Pawar, B.; Gang, M. G.; Pawar, S.; Kim, J. H. Cobalt iron hydroxide as a precious metalfree bifunctional electrocatalyst for efficient overall water splitting. Small 2018, 14, 1702568.

    Google Scholar 

  143. Wen, J. F.; Xu, B. G.; Zhou, J. Y. Toward flexible and wearable embroidered supercapacitors from cobalt phosphides-decorated conductive fibers. Nano-Micro Lett. 2019, 11, 89.

    ADS  CAS  Google Scholar 

  144. Liu, Q.; Wang, L.; Liu, X.; Yu, P.; Tian, C. G.; Fu, H. G. N-doped carbon-coated Co3O4 nanosheet array/carbon cloth for stable rechargeable Zn-air batteries. Sci. China Mater. 2019, 62, 624–632.

    CAS  Google Scholar 

  145. Liu, Q.; Liu, X.; **e, Y.; Sun, F. F.; Liang, Z. J.; Wang, L.; Fu, H. G. N- Doped carbon coating enhances the bifunctional oxygen reaction activity of CoFe nanoparticles for a highly stable Zn-air battery. J. Mater. Chem. A 2020, 8, 21189–21198.

    CAS  Google Scholar 

  146. Qi, K.; Cui, X. Q.; Gu, L.; Yu, S. S.; Fan, X. F.; Luo, M. C.; Xu, S.; Li, N. B.; Zheng, L. R.; Zhang, Q. H. et al. Single-atom cobalt array bound to distorted 1T MoS2 with ensemble effect for hydrogen evolution catalysis. Nat. Commun. 2019, 10, 5231.

    ADS  PubMed  PubMed Central  Google Scholar 

  147. Zhang, J. T.; Hu, H.; Li, Z.; Lou, X. W. D. Double-shelkd nanocages with cobalt hydroxide inner shell and layered double hydroxides outer shell as high-efficiency polysulfide mediator for lithium-sulfur batteries. Angew. Chem., Int. Ed. 2016, 55, 3982–3986.

    ADS  CAS  Google Scholar 

  148. Marje, S. J.; Patil, V. V.; Parale, V. G.; Park, H. H.; Shinde, P. A.; Gunjakar, J. L.; Lokhande, C. D.; Patil, U. M. Microsheets like nickel cobalt phosphate thin films as cathode for hybrid asymmetric solid-state supercapacitor: Influence of nickel and cobalt ratio variation. Chem. Eng. J. 2022, 429, 132184.

    CAS  Google Scholar 

  149. Song, Z. X.; Wang, K. X.; Sun, Q.; Zhang, L.; Li, J. J.; Li, D. J.; Sze, P. W.; Liang, Y.; Sun, X. L.; Fu, X. Z. et al. High-performance ammonium cobalt phosphate nanosheet electrocatalyst for alkaline saline water oxidation. Adv. Sci. (Weinh.) 2021, 8, 2100498.

    CAS  PubMed  Google Scholar 

  150. Wang, Y. C.; Zhou, T.; Jiang, K.; Da, P. M.; Peng, Z.; Tang, J.; Kong, B.; Cai, W. B.; Yang, Z. Q.; Zheng, G. F. Reduced mesoporous Co3O4 nanowires as efficient water oxidation electrocatalysts and supercapacitor electrodes. Adv. Energy Mater. 2014, 4, 1400696.

    Google Scholar 

  151. Tang, Y.; Shen, K. Y.; Zheng, J.; He, B. H.; Chen, J. L.; Lu, J. H.; Ge, W.; Shen, L. X.; Yang, P. Z.; Deng, S. K. d- Band center modulating of CoO,/Co9S8 by oxygen vacancies for fast-kinetics pathway of water oxidation. Chem. Eng. J. 2022, 427, 130915.

    CAS  Google Scholar 

  152. Yuan, C. Z.; Wang, S.; Hui, K. S.; Wang, K. X.; Li, J. F.; Gao, H. X.; Zha, C. Y.; Zhang, X. M.; Dinh, D. A.; Wu, X. L. et al. In situ immobilizing atomically dispersed Ru on oxygen-defective Co3O4 for efficient oxygen evolution. ACS Catal. 2023, 13, 2462–2471.

    CAS  Google Scholar 

  153. Wang, Z. C.; Xu, W. J.; Chen, X. K.; Peng, Y. H.; Song, Y. Y.; Lv, C. X.; Liu, H. L.; Sun, J. W.; Yuan, D.; Li, X. Y. et al. Defect-rich nitrogen doped Co3O4/C porous nanocubes enable high-efficiency bifunctional oxygen electrocatalysis. Adv. Funct. Mater. 2019, 29, 1902875.

    Google Scholar 

  154. Zheng, X. B.; Chen, Y. P.; Lai, W. H.; Li, P.; Ye, C. L.; Liu, N. N.; Dou, S. X.; Pan, H. G.; Sun, W. P. Enriched d-band holes enabling fast oxygen evolution kinetics on atomic-layered defect-rich lithium cobalt oxide nanosheets. Adv. Funct. Mater. 2022, 32, 2200663.

    CAS  Google Scholar 

  155. Gu, Y. H.; Wang, X. Y.; Bao, A.; Dong, L.; Zhang, X. Y.; Pan, H. J.; Cui, W. Q.; Qi, X. W. Enhancing electrical conductivity of single-atom doped Co3O4 nanosheet arrays at grain boundary by phosphor do** strategy for efficient water splitting. Nano Res. 2022, 15, 9511–9519.

    ADS  CAS  Google Scholar 

  156. Wang, Z. P.; Lin, Z. P.; Deng, J.; Shen, S. J.; Meng, F. Q.; Zhang, J. T.; Zhang, Q. H.; Zhong, W. W.; Gu, L. Elevating the d-band center of six-coordinated octahedrons in Co9S8 through Feincorporated topochemical deintercalation. Adv. Energy Mater. 2021, 11, 2003023.

    ADS  CAS  Google Scholar 

  157. **e, W. W.; Huang, J. H.; Huang, L. T.; Geng, S. P.; Song, S. Q.; Tsiakaras, P.; Wang, Y. Novel fluorine-doped cobalt molybdate nanosheets with enriched oxygen-vacancies for improved oxygen evolution reaction activity. Appl. Catal. B Environ. 2022, 363, 120871.

    Google Scholar 

  158. Gong, R.; Liu, B. W.; Wang, X. L.; Du, S. C.; ** and lattice-contracting on armor-like ruthenium oxide drives pH-universal oxygen evolution. Small 2023, 19, 2204889.

    CAS  Google Scholar 

  159. Du, Y. M.; Li, B.; Xu, G. R.; Wang, L. Recent advances in interface engineering strategy for highly-efficient electrocatalytic water splitting. InfoMat 2023, 5, e12377.

    CAS  Google Scholar 

  160. Zhang, G. R.; Li, X. J.; Li, N.; Wu, T. T.; Wang, L. Face-to-face heterojunctions within 2D/2D porous NiCo oxyphosphide/g-C3N4 towards efficient and stable photocatalytic H2 evolution. Nano Res. 2023, 16, 6568–6576.

    ADS  CAS  Google Scholar 

  161. Chen, W. X.; Hu, Y. J.; Peng, P.; Cui, J. H.; Wang, J. M.; Wei, W.; Zhang, Y. Y.; Ostrikov, K. K.; Zang, S. Q. Multidimensional Ni-Co-sulfide heterojunction electrocatalyst for highly efficient overall water splitting. Sci. China Mater. 2022, 65, 2421–2432.

    CAS  Google Scholar 

  162. Wang, Y. L.; Du, Y. M.; Fu, Z. Q.; Ren, J. H.; Fu, Y. L.; Wang, L. Construction of Ru/FeCoP heterointerface to drive dual active site mechanism for efficient overall water splitting. J. Mater. Chem. A 2022, 10, 16071–16079.

    CAS  Google Scholar 

  163. Zhang, X. H.; Wu, A. P.; Wang, D. X.; Jiao, Y. Q.; Yan, H. J.; **, C. X.; **e, Y.; Tian, C. G. Fine-tune the electronic structure in Co-Mo based catalysts to give easily coupled HER and OER catalysts for effective water splitting. Appl. Catal. B Environ. 2023, 328, 122474.

    CAS  Google Scholar 

  164. Tan, X. Y.; Geng, S. Z.; Ji, Y. J.; Shao, Q.; Zhu, T.; Wang, P. T.; Li, Y. Y.; Huang, X. Q. Closest packing polymorphism interfaced metastable transition metal for efficient hydrogen evolution. Adv. Mater. 2020, 32, 2002857.

    CAS  Google Scholar 

  165. Li, D.; Qin, Y. Y.; Liu, J.; Zhao, H. Y.; Sun, Z. J.; Chen, G. B.; Wu, D. Y.; Su, Y. Q.; Ding, S. J.; **ao, C. H. Dense crystalline-amorphous interfacial sites for enhanced electrocatalytic oxygen evolution. Adv. Funct. Mater. 2022, 32, 2107056.

    CAS  Google Scholar 

  166. Ren, J. H.; Du, Y. M.; Wang, Y. L.; Zhao, S. G.; Yang, B.; Li, B.; Wang, L. Modulating amorphous/crystalline heterogeneous interface in RuCoMoyOx grown on nickel foam to achieve efficient overall water splitting. Chem. Eng. J. 2023, 469, 143993.

    CAS  Google Scholar 

  167. Shen, S. J.; Wang, Z. P.; Lin, Z. P.; Song, K.; Zhang, Q. H.; Meng, F. Q.; Gu, L.; Zhong, W. W. Crystalline- amorphous interfaces coupling of CoSe2/CoP with optimized d-band center and boosted electrocatalytic hydrogen evolution. Adv. Mater. 2022, 34, 2110631.

    CAS  Google Scholar 

  168. Liu, Y. D.; Sakthivel, T.; Hu, F.; Tian, Y. H.; Wu, D. S.; Ang, E. H.; Liu, H.; Guo, S. W.; Peng, S. J.; Dai, Z. F. Enhancing the d/p-band center proximity with amorphous-crystalline interface coupling for boosted pH-robust water electrolysis. Adv. Energy Mater. 2023, 13, 2203797.

    CAS  Google Scholar 

  169. Cai, J. Y.; Song, Y.; Zang, Y. P.; Niu, S. W.; Wu, Y. S.; **e, Y. F.; Zheng, X. S.; Liu, Y.; Lin, Y.; Liu, X. J. et al. N- induced lattice contraction generally boosts the hydrogen evolution catalysis of P-rich metal phosphides. Sci. Adv. 2020, 6, eaaw8113.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  170. Zhou, Y.; Zhang, J. T.; Ren, H.; Pan, Y.; Yan, Y. G.; Sun, F. C.; Wang, X. Y.; Wang, S. T.; Zhang, J. Mo do** induced metallic CoSe for enhanced electrocatalytic hydrogen evolution. Appl. Catal. B Environ. 2020, 268, 118467.

    CAS  Google Scholar 

  171. Wang, Y.; Jiao, Y. Q.; Yan, H. J.; Yang, G. C.; Tian, C. G.; Wu, A. P.; Liu, Y.; Fu, H. G. Vanadium- incorporated CoP2 with lattice expansion for highly efficient acidic overall water splitting. Angew. Chem., Int. Ed. 2022, 61, e202116233.

    ADS  CAS  Google Scholar 

  172. Yang, F.; **ong, T. Z.; Huang, P.; Zhou, S. H.; Tan, Q. R.; Yang, H.; Huang, Y. C.; Balogun, M. S. Nanostructured transition metal compounds coated 3D porous core-shell carbon fiber as monolith water splitting electrocatalysts: A general strategy. Chem. Eng. J. 2021, 423, 130279.

    CAS  Google Scholar 

  173. Chen, R. R.; Sun, Y. M.; Ong, S. J. H.; **, S. B.; Du, Y. H.; Liu, C. T.; Lev, O.; Xu, Z. J. Antiferromagnetic inverse spinel oxide LiCoVO4 with spin-polarized channels for water oxidation. Adv. Mater. 2020, 32, 1907976.

    CAS  Google Scholar 

  174. Sun, Y. M.; Ren, X.; Sun, S. N.; Liu, Z.; **, S. B.; Xu, Z. J. Engineering high-spin state cobalt cations in spinel zinc cobalt oxide for spin channel propagation and active site enhancement in water oxidation. Angew. Chem., Int. Ed. 2021, 60, 14536–14544.

    CAS  Google Scholar 

  175. Li, F. F.; Ai, H. Q.; Liu, D.; Lo, K. H.; Pan, H. An enhanced oxygen evolution reaction on 2D CoOOH via strain engineering: An insightful view from spin state transition. J. Mater. Chem. A 2021, 9, 17749–17759.

    ADS  CAS  Google Scholar 

  176. Hsu, S. H.; Hung, S. F.; Wang, H. Y.; **ao, F. X.; Zhang, L. P.; Yang, H. B.; Chen, H. M.; Lee, J. M.; Liu, B. Tuning the electronic spin state of catalysts by strain control for highly efficient water electrolysis. Small Methods 2018, 2, 1800001.

    Google Scholar 

  177. Tong, Y.; Guo, Y. Q.; Chen, P. Z.; Liu, H. F.; Zhang, M. X.; Zhang, L. D.; Yan, W. S.; Chu, W. S.; Wu, C. Z.; **e, Y. Spin-state regulation of perovskite cobaltite to realize enhanced oxygen evolution activity. Chem 2017, 3, 812–821.

    CAS  Google Scholar 

  178. Wu, T. Z.; Ren, X.; Sun, Y. M.; Sun, S. N.; **an, G. Y.; Scherer, G. G.; Fisher, A. C.; Mandler, D.; Ager, J. W.; Grimaud, A. et al. Spin pinning effect to reconstructed oxyhydroxide layer on ferromagnetic oxides for enhanced water oxidation. Nat. Commun. 2021, 12, 3634.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  179. Chen, R. R.; Chen, G.; Ren, X.; Ge, J. J.; Ong, S. J. H.; **, S. B.; Wang, X.; Xu, Z. J. SmCo5 with a reconstructed oxyhydroxide surface for spin-selective water oxidation at elevated temperature. Angew. Chem., Int. Ed. 2021, 66, 25884–25890.

    Google Scholar 

  180. Ren, X.; Wu, T. Z.; Sun, Y. M.; Li, Y.; **an, G. Y.; Liu, X. H.; Shen, C. M.; Gracia, J.; Gao, H. J.; Yang, H. T. et al. Spin-polarized oxygen evolution reaction under magnetic field. Nat. Commun. 2021, 12, 2608.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  181. Yu, M. Q.; Li, G. W.; Fu, C. G.; Liu, E. K.; Manna, K.; Budiyanto, E.; Yang, Q.; Felser, C.; Tüysüz, H. Tunable eg orbital occupancy in heusler compounds for oxygen evolution reaction. Angew. Chem., Int. Ed. 2021, 66, 5800–5805.

    Google Scholar 

  182. Zhang, J. Y.; Yan, Y.; Mei, B. B.; Qi, R. J.; He, T.; Wang, Z. T.; Fang, W. S.; Zaman, S.; Su, Y. Q.; Ding, S. J. et al. Local spin-state tuning of cobalt-iron selenide nanoframes for the boosted oxygen evolution. Energy Environ. Sci. 2021, 14, 365–373.

    CAS  Google Scholar 

  183. Lee, W. H.; Han, M. H.; Ko, Y. J.; Min, B. K.; Chae, K. H.; Oh, H. S. Electrode reconstruction strategy for oxygen evolution reaction: Maintaining Fe-CoOOH phase with intermediate-spin state during electrolysis. Nat. Commun. 2022, 13, 605.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  184. Li, Z. T.; Yang, J.; Chen, Z.; Zheng, C. Y.; Wei, L. Q.; Yan, Y. C.; Hu, H.; Wu, M. B.; Hu, Z. P. V “Bridged” Co-O to eliminate charge transfer barriers and drive lattice oxygen oxidation during water-splitting. Adv. Funct. Mater. 2021, 31, 2008822.

    CAS  Google Scholar 

  185. Zhang, X. Y.; Feng, C.; Dong, B.; Liu, C. G.; Chai, Y. M. High-voltage-enabled stable cobalt species deposition on MnO2 for water oxidation in acid. Adv. Mater. 2023, 35, 2207066.

    CAS  Google Scholar 

  186. Kang, W. C.; Wei, R. F.; Yin, H.; Li, D. F.; Chen, Z.; Huang, Q. G.; Zhang, P. F.; **g, H. W.; Wang, X. L.; Li, C. Unraveling sequential oxidation kinetics and determining roles of multi-cobalt active sites on Co3O4 catalyst for water oxidation. J. Am. Chem. Soc. 2023, 145, 3470–3477.

    CAS  PubMed  Google Scholar 

  187. Yeo, B. S.; Bell, A. T. Enhanced activity of gold-supported cobalt oxide for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 2011, 133, 5587–5593.

    CAS  PubMed  Google Scholar 

  188. Ren, J. H.; Liu, J.; Du, Y. M.; Li, S. S.; Wang, M. M.; Li, B.; Yang, B.; Wang, L.; Liu, Y. R. Trace ruthenium promoted dual-reconstruction of CoFeP@C/NF for activating overall water splitting performance beyond precious-metals. Nano Res. 2023, 16, 10810–10821.

    ADS  CAS  Google Scholar 

  189. Lassalle-Kaiser, B.; Zitolo, A.; Fonda, E.; Robert, M.; Anxolabéhère-Mallart, E. In situ observation of the formation and structure of hydrogen-evolving amorphous cobalt electrocatalysts. ACS Energy Lett. 2017, 2, 2545–2551

    CAS  Google Scholar 

  190. Guan, D. Q.; Ryu, G.; Hu, Z. W.; Zhou, J.; Dong, C. L.; Huang, Y. C.; Zhang, K. F.; Zhong, Y. J.; Komarek, A. C.; Zhu, M. et al. Utilizing ion leaching effects for achieving high oxygen-evolving performance on hybrid nanocomposite with self-optimized behaviors. Nat. Commun. 2020, 11, 3376.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  191. Hung, S. F.; Hsu, Y. Y.; Chang, C. J.; Hsu, C. S.; Suen, N. T.; Chan, T. S.; Chen, H. M. Unraveling geometrical site confinement in highly efficient iron-doped electrocatalysts toward oxygen evolution reaction. Adv. Energy Mater. 2018, 8, 1701686.

    Google Scholar 

  192. Aiyappa, H. B.; Wilde, P.; Quast, T.; Masa, J.; Andronescu, C.; Chen, Y. T.; Muhler, M.; Fischer, R. A.; Schuhmann, W. Oxygen evolution electrocatalysis of a single MOF-derived composite nanoparticle on the tip of a nanoelectrode. Angew. Chem., Int. Ed. 2019, 58, 8927–8931.

    CAS  Google Scholar 

  193. Cao, B. F.; Veith, G. M.; Neuefeind, J. C.; Adzic, R. R.; Khalifah, P. G. Mixed close-packed cobalt molybdenum nitrides as non-noble metal electrocatalysts for the hydrogen evolution reaction. J. Am. Chem. Soc. 2013, 135, 19186–19192.

    CAS  PubMed  Google Scholar 

  194. Li, A. L.; Kong, S.; Guo, C. X.; Ooka, H.; Adachi, K.; Hashizume, D.; Jiang, Q. K.; Han, H. X.; **ao, J. P.; Nakamura, R. Enhancing the stability of cobalt spinel oxide towards sustainable oxygen evolution in acid. Nat. Catal. 2022, 5, 109–118.

    CAS  Google Scholar 

  195. Simondson, D.; Chatti, M.; Bonke, S. A.; Tesch, M. F.; Golnak, R.; **ao, J.; Hoogeveen, D. A.; Cherepanov, P. V.; Gardiner, J. L.; Tricoli, A. et al. Stable acidic water oxidation with a cobalt-iron-lead oxide catalyst operating via a cobalt-selective self-healing mechanism. Angew. Chem., Int. Ed. 2021, 60, 15821–15826.

    CAS  Google Scholar 

  196. Wang, J.; Kim, S. J.; Liu, J. P.; Gao, Y.; Choi, S.; Han, J.; Shin, H.; Jo, S.; Kim, J.; Ciucci, F. et al. Redirecting dynamic surface restructuring of a layered transition metal oxide catalyst for superior water oxidation. Nat. Catal. 2021, 4, 212–222.

    Google Scholar 

  197. Bai, J.; Mei, J.; Liao, T.; Sun, Q.; Chen, Z. G.; Sun, Z. Q. Molybdenum-promoted surface reconstruction in polymorphic cobalt for initiating rapid oxygen evolution. Adv. Energy Mater. 2022, 12, 2103247.

    CAS  Google Scholar 

  198. Li, R. C.; Hu, B. H.; Yu, T. W.; Chen, H. X.; Wang, Y.; Song, S. Q. Insights into correlation among surface-structure-activity of cobalt-derived pre-catalyst for oxygen evolution reaction. Adv. Sci. (Weinh.) 2020, 7, 1902830.

    CAS  PubMed  Google Scholar 

  199. Duan, Y.; Lee, J. Y.; **, S. B.; Sun, Y. M.; Ge, J. J.; Ong, S. J. H.; Chen, Y. B.; Dou, S.; Meng, F. X.; Diao, C. Z. et al. Anodic oxidation enabled cation leaching for promoting surface reconstruction in water oxidation. Angew. Chem., Int. Ed. 2021, 60, 7418–7425.

    CAS  Google Scholar 

  200. Stevens, M. B.; Enman, L. J.; Korkus, E. H.; Zaffran, J.; Trang, C. D. M.; Asbury, J.; Kast, M. G.; Toroker, M. C.; Boettcher, S. W. Ternary Ni-Co-Fe oxyhydroxide oxygen evolution catalysts: Intrinsic activity trends, electrical conductivity, and electronic band structure. Nano Res. 2019, 12, 2288–2295.

    CAS  Google Scholar 

  201. De Araújo, J. F.; Dionigi, F.; Merzdorf, T.; Oh, H. S.; Strasser, P. Evidence of Mars-Van-Krevelen mechanism in the electrochemical oxygen evolution on Ni-based catalysts. Angew. Chem., Int. Ed. 2021, 60, 14981–14988.

    Google Scholar 

  202. Jiang, H. L.; He, Q.; Li, X. Y.; Su, X. Z.; Zhang, Y. K.; Chen, S. M.; Zhang, S.; Zhang, G. Z.; Jiang, J.; Luo, Y. et al. Tracking structural self-reconstruction and identifying true active sites toward cobalt oxychloride precatalyst of oxygen evolution reaction. Adv. Mater. 2019, 31, 1805127.

    Google Scholar 

  203. Bai, X.; Ren, Z. Y.; Du, S. C.; Meng, H. Y.; Wu, J.; Xue, Y. Z.; Zhao, X. J.; Fu, H. G. In-situ structure reconstitution of NiCo2Px for enhanced electrochemical water oxidation. Sci. Bull. 2017, 62, 1510–1518.

    CAS  Google Scholar 

  204. Ji, P. X.; Yu, R. H.; Wang, P. Y.; Pan, X. L.; **, H. H.; Zheng, D. Y.; Chen, D.; Zhu, J. W.; Pu, Z. H.; Wu, J. S. et al. Ultra-fast and in-depth reconstruction of transition metal fluorides in electrocatalytic hydrogen evolution processes. Adv. Sci. (Weinh.) 2022, 9, 2103567.

    CAS  PubMed  Google Scholar 

  205. Zhuang, L. Z.; Li, Z. H.; Li, M. R.; Tao, H. L.; Mao, X.; Lian, C.; Ge, L.; Du, A. J.; Xu, Z.; Shao, Z. P. et al. A new operando surface restructuring pathway via ion-pairing of catalyst and electrolyte for water oxidation. Chem. Eng. J. 2023, 454, 140071.

    CAS  Google Scholar 

  206. Han, L. J.; Tang, P. Y.; Reyes-Carmona, À.; Rodríguez-García, B.; Torréns, M.; Morante, J. R.; Arbiol, J.; Galan-Mascaros, J. R. Enhanced activity and acid pH stability of Prussian blue-type oxygen evolution electrocatalysts processed by chemical etching. J. Am. Chem. Soc. 2016, 138, 16037–16045.

    CAS  PubMed  Google Scholar 

  207. Zhou, T. L.; Wang, C. H.; Shi, Y. M.; Liang, Y.; Yu, Y. F.; Zhang, B. Temperature- regulated reversible transformation of spinel-to-oxyhydroxide active species for electrocatalytic water oxidation. J. Mater. Chem. A 2020, 8, 1631–1635.

    CAS  Google Scholar 

  208. Fan, K.; Zou, H. Y.; Dharanipragada, N. V. R. A.; Fan, L. Z.; Inge, A. K.; Duan, L. L.; Zhang, B. B.; Sun, L. C. Surface and bulk reconstruction of CoW sulfides during pH-universal electrocatalytic hydrogen evolution. J. Mater. Chem. A 2021, 9, 11359–11369.

    CAS  Google Scholar 

  209. He, J. T.; Liu, F.; Chen, Y. K.; Liu, X. Y.; Zhang, X. L.; Zhao, L. L.; Chang, B.; Wang, J. G.; Liu, H.; Zhou, W. J. Cthode electrochemically reconstructed V-doped CoO nanosheets for enhanced alkaline hydrogen evolution reaction. Chem. Eng. J. 2022, 432, 134331.

    CAS  Google Scholar 

  210. Liu, D.; Ai, H. Q.; Li, J. L.; Fang, M. L.; Chen, M. P.; Liu, D.; Du, X. Y.; Zhou, P. F.; Li, F. F.; Lo, K. H. et al. Surface reconstruction and phase transition on vanadium-cobalt-iron trimetal nitrides to form active oxyhydroxide for enhanced electrocatalytic water oxidation. Adv. Energy Mater. 2020, 10, 2002464.

    CAS  Google Scholar 

  211. Mefford, J. T.; Akbashev, A. R.; Kang, M.; Bentley, C. L.; Gent, W. E.; Deng, H. D.; Alsem, D. H.; Yu, Y. S.; Salmon, N. J.; Shapiro, D. A. et al. Correlative operando microscopy of oxygen evolution electrocatalysts. Nature 2021, 593, 67–73.

    ADS  CAS  PubMed  Google Scholar 

  212. Yang, L.; Qin, H. Y.; Dong, Z. H.; Wang, T. Z.; Wang, G. C.; Jiao, L. F. Metallic S-CoTe with surface reconstruction activated by electrochemical oxidation for oxygen evolution catalysis. Small 2021, 17, 2102027.

    CAS  Google Scholar 

  213. Zhao, X. M.; Han, Q. L.; Li, J. D.; Du, X. H.; Liu, G. H.; Wang, Y. J.; Wu, L. L.; Chen, Z. W. Ordered macroporous design of sacrificial Co/VN nano-heterojunction as bifunctional oxygen electrocatalyst for rechargeable zinc-air batteries. Chem. Eng. J. 2022, 433, 133509.

    CAS  Google Scholar 

  214. Wu, C.; Wang, X. P.; Tang, Y.; Zhong, H. Y.; Zhang, X.; Zou, A. Q.; Zhu, J. L.; Diao, C. Z.; **, S. B.; Xue, J. M. et al. Origin of surface reconstruction in lattice oxygen oxidation mechanism based-transition metal oxides: A spontaneous chemical process. Angew. Chem., Int. Ed. 2023, 62, e202218599.

    CAS  Google Scholar 

  215. Pena, N. O.; Ihiawakrim, D.; Han, M.; Lassalle-Kaiser, B.; Carenco, S.; Sanchez, C.; Laberty-Robert, C.; Portehault, D.; Ersen, O. Morphological and structural evolution of Co3O4 nanoparticles revealed by in situ electrochemical transmission electron microscopy during electrocatalytic water oxidation. ACS Nano 2019, 13, 11372–11381.

    Google Scholar 

  216. Sun, J.; Xue, H.; Guo, N. K.; Song, T. S.; Hao, Y. R.; Sun, J. W.; Zhang, J. W.; Wang, Q. Synergetic metal defect and surface chemical reconstruction into NiCo2S4/ZnS heterojunction to achieve outstanding oxygen evolution performance. Angew. Chem., Int. Ed. 2021, 60, 19435–19441.

    CAS  Google Scholar 

  217. Bergmann, A.; Martinez-Moreno, E.; Teschner, D.; Chernev, P.; Gliech, M.; De Araújo, J. F.; Reier, T.; Dau, H.; Strasser, P. Reversible amorphization and the catalytically active state of crystalline Co3O4 during oxygen evolution. Nat. Commun. 2015, 6, 8625.

    ADS  CAS  PubMed  Google Scholar 

  218. Yuan, L.; Liu, S.; Xu, S. C.; Yang, X. F.; Bian, J. L.; Lv, C. C.; Yu, Z. Y.; He, T.; Huang, Z. P.; Boukhvalov, D. W. et al. Modulation of Volmer step for efficient alkaline water splitting implemented by titanium oxide promoting surface reconstruction of cobalt carbonate hydroxide. Nano Energy 2021, 82, 105732.

    CAS  Google Scholar 

  219. Chu, H. Q.; Feng, P. P.; **, B. W.; Ye, G.; Cui, S. S.; Zheng, M.; Zhang, G. X.; Yang, M. In-situ release of phosphorus combined with rapid surface reconstruction for Co–Ni bimetallic phosphides boosting efficient overall water splitting. Chem. Eng. J. 2022, 433, 133523.

    CAS  Google Scholar 

  220. An, L.; Zhang, H.; Zhu, J. M.; **, S. B.; Huang, B. L.; Sun, M. Z.; Peng, Y.; **, P. X.; Yan, C. H. Balancing activity and stability in spinel cobalt oxides through geometrical sites occupation towards efficient electrocatalytic oxygen evolution. Angew. Chem., Int. Ed. 2023, 62, e202214600.

    CAS  Google Scholar 

  221. Wang, L. Q.; Hao, Y. X.; Deng, L. M.; Hu, F.; Zhao, S.; Li, L. L.; Peng, S. J. Rapid complete reconfiguration induced actual active species for industrial hydrogen evolution reaction. Nat. Commun. 2022, 13, 5785.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  222. Zhang, R. R.; Pan, L.; Guo, B. B.; Huang, Z. F.; Chen, Z. X.; Wang, L.; Zhang, X. W.; Guo, Z. Y.; Xu, W.; Loh, K. P. et al. Tracking the role of defect types in Co3O4 structural evolution and active motifs during oxygen evolution reaction. J. Am. Chem. Soc. 2023, 145, 2271–2281.

    CAS  PubMed  Google Scholar 

  223. Bergmann, A.; Jones, T. E.; Moreno, E. M.; Teschner, D.; Chernev, P.; Gliech, M.; Reier, T.; Dau, H.; Strasser, P. Unified structural motifs of the catalytically active state of Co(oxyhydr)oxides during the electrochemical oxygen evolution reaction. Nat. Catal. 2018, 1, 711–719.

    CAS  Google Scholar 

  224. Lin, X.; Huang, Y. C.; Hu, Z. W.; Li, L. L.; Zhou, J.; Zhao, Q. Y.; Huang, H. L.; Sun, J.; Pao, C. W.; Chang, Y. C. et al. 5f covalency synergistically boosting oxygen evolution of UCoO4 catalyst. J. Am. Chem. Soc. 2022, 144, 416–423.

    CAS  PubMed  Google Scholar 

  225. Wu, T. Z.; Sun, S. N.; Song, J. J.; **, S. B.; Du, Y. H.; Chen, B.; Sasangka, W. A.; Liao, H. B.; Gan, C. L.; Scherer, G. G. et al. Iron-facilitated dynamic active-site generation on spinel CoAl2O4 with self-termination of surface reconstruction for water oxidation. Nat. Catal. 2019, 2, 763–772.

    CAS  Google Scholar 

  226. Hung, S. F.; Chan, Y. T.; Chang, C. C.; Tsai, M. K.; Liao, Y. F.; Hiraoka, N.; Hsu, C. S.; Chen, H. M. Identification of stabilizing high-valent active sites by operando high- energy resolution fluorescence-detected X-ray absorption spectroscopy for high-efficiency water oxidation. J. Am. Chem. Soc. 2018, 146, 17263–17270.

    Google Scholar 

  227. Zhao, Y. G.; Dongfang, N. C.; Triana, C. A.; Huang, C.; Erni, R.; Wan, W. C.; Li, J. G.; Stoian, D.; Pan, L.; Zhang, P. et al. Dynamics and control of active sites in hierarchically nanostructured cobalt phosphide/chalcogenide-based electrocatalysts for water splitting. Energy Environ. Sci. 2022, 15, 727–739.

    CAS  PubMed  PubMed Central  Google Scholar 

  228. Wu, Q. B.; Liang, J. W.; **ao, M. J.; Long, C.; Li, L.; Zeng, Z. H.; Mavric, A.; Zheng, X.; Zhu, J.; Liang, H. W. et al. Non-covalent ligand-oxide interaction promotes oxygen evolution. Nat. Commun. 2023, 14, 997.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  229. Wang, C.; Zhai, P. L.; **a, M. Y.; Liu, W.; Gao, J. F.; Sun, L. C.; Hou, J. G. Identification of the origin for reconstructed active sites on oxyhydroxide for oxygen evolution reaction. Adv. Mater. 2023, 35, 2209307.

    CAS  Google Scholar 

  230. Burke, M. S.; Kast, M. G.; Trotochaud, L.; Smith, A. M.; Boettcher, S. W. Cobalt- iron (oxy)hydroxide oxygen evolution electrocatalysts: The role of structure and composition on activity, stability, and mechanism. J. Am. Chem. Soc. 2015, 137, 3638–3648.

    CAS  PubMed  Google Scholar 

  231. Chen, Y. B.; Sun, Y. M.; Wang, M. Y.; Wang, J. X.; Li, H. Y.; **, S. B.; Wei, C.; **, P. X.; Sterbinsky, G. E.; Freeland, J. W. et al. Lattice site-dependent metal leaching in perovskites toward a honeycomb-like water oxidation catalyst. Sci. Adv. 2021, 7, eabk1788.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  232. **ao, Z. H.; Huang, Y. C.; Dong, C. L.; **e, C.; Liu, Z. J.; Du, S. Q.; Chen, W.; Yan, D. F.; Tao, L.; Shu, Z. W. et al. Operando identification of the dynamic behavior of oxygen vacancy-rich Co3O4 for oxygen evolution reaction. J. Am. Chem. Soc. 2020, 142, 12087–12095.

    CAS  PubMed  Google Scholar 

  233. Chen, J. S.; Li, H.; Yu, Z. X.; Liu, C.; Yuan, Z. W.; Wang, C. J.; Zhao, S. L.; Henkelman, G.; Li, S. Z.; Wei, L. et al. Octahedral coordinated trivalent cobalt enriched multimetal oxygen-evolution catalysts. Adv. Energy Mater. 2020, 16, 2002593.

    Google Scholar 

  234. Zhou, X. B.; Liao, X. B.; Pan, X. L.; Yan, M. Y.; He, L.; Wu, P. J.; Zhao, Y.; Luo, W.; Mai, L. Q. Unveiling the role of surface P–O group in P-doped Co3O4 for electrocatalytic oxygen evolution by on-chip micro-device. Nano Energy 2021, 83, 105748.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of this research by the National Natural Science Foundation of China (Nos. U20A20250 and 22179034), and the Natural Science Foundation of Heilongjiang Province (No. ZD2023B002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lei Wang or Honggang Fu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Z., Shen, D., Wang, L. et al. Recent progress of cobalt-based electrocatalysts for water splitting: Electron modulation, surface reconstitution, and applications. Nano Res. 17, 2234–2269 (2024). https://doi.org/10.1007/s12274-023-6219-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6219-4

Keywords

Navigation