Log in

Asymmetrically coordinated single-atom iron nanozymes with Fe-N1C2 structure: A peroxidase mimetic for melatonin detection

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Owing to the unique coordination environment and high atom utilization efficiency, single atom catalysts have been considered as an ideal artificial enzyme to mimic natural enzymes. Herein, single-atom Fe nanozyme anchored on N-doped Ti3C2Tx (Fe SA/N-Ti3C2Tx) with asymmetrically coordinated Fe-N1C2 configuration is synthesized by vacancy capture and heteroatom do** strategy, which exhibits excellent peroxidase-like activity. Based on the results of peroxidase catalytic kinetics and X-ray adsorption fine spectroscopy, the Fe-N1C2 active sites in Fe SA/N-Ti3C2Tx are responsible for the excellent performance. Furthermore, the developed Fe SA/N-Ti3C2Tx can be employed to quantitative detection of melatonin (MT), which shows a wide linear detection range (0.01–100 µM) and an excellent detection limit (7.3 nM) in buffer, 0.01–100 µM and 7.8 nM in serum samples. Our work proves that MXene-based single atoms can be promising nanozyme in the field of bioassays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. André, R.; Natálio, F.; Humanes, M.; Leppin, J.; Heinze, K.; Wever, R.; Schröder, H. C.; Müller, W. E. G.; Tremel, W. V2O5 nanowires with an intrinsic peroxidase-like activity. Adv. Funct. Mater. 2011, 21, 501–509.

    Google Scholar 

  2. Asati, A.; Santra, S.; Kaittanis, C.; Nath, S.; Perez, J. M. Oxidase-like activity of polymer-coated cerium oxide nanoparticles. Angew. Chem., Int. Ed. 2009, 48, 2308–2312.

    CAS  Google Scholar 

  3. Cao, F. F.; Zhang, Y.; Sun, Y. H.; Wang, Z. Z.; Zhang, L.; Huang, Y. Y.; Liu, C. Q.; Liu, Z.; Ren, J. S.; Qu, X. G. Ultrasmall nanozymes isolated within porous carbonaceous frameworks for synergistic cancer therapy: Enhanced oxidative damage and reduced energy supply. Chem. Mater. 2018, 30, 7831–7839.

    CAS  Google Scholar 

  4. Li, W.; Liu, Z.; Liu, C. Q.; Guan, Y. J.; Ren, J. S.; Qu, X. G. Manganese dioxide nanozymes as responsive cytoprotective shells for individual living cell encapsulation. Angew. Chem., Int. Ed. 2017, 56, 13661–13665.

    CAS  Google Scholar 

  5. Liu, B. W.; Liu, J. W. Surface modification of nanozymes. Nano Res. 2017, 10, 1125–1148.

    CAS  Google Scholar 

  6. Fang, G.; Li, W. F.; Shen, X. M.; Perez-Aguilar, J. M.; Chong, Y.; Gao, X. F.; Chai, Z. F.; Chen, C. Y.; Ge, C. C.; Zhou, R. H. Differential Pd-nanocrystal facets demonstrate distinct antibacterial activity against Gram-positive and Gram-negative bacteria. Nat. Commun. 2018, 9, 129.

    Google Scholar 

  7. Hou, S.; Hu, X. N.; Wen, T.; Liu, W. Q.; Wu, X. C. Core—shell noble metal nanostructures templated by gold nanorods. Adv. Mater. 2013, 25, 3857–3862.

    CAS  Google Scholar 

  8. Chen, M.; Zhou, H.; Liu, X. K.; Yuan, T. W.; Wang, W. Y.; Zhao, C.; Zhao, Y. F.; Zhou, F. Y.; Wang, X.; Xue, Z. G. et al. Single iron site nanozyme for ultrasensitive glucose detection. Small 2020, 16, 2002343.

    CAS  Google Scholar 

  9. Natalio, F.; André, R.; Hartog, A. F.; Stoll, B.; Jochum, K. P.; Wever, R.; Tremel, W. Vanadium pentoxide nanoparticles mimic vanadium haloperoxidases and thwart biofilm formation. Nat. Nanotechnol. 2012, 7, 530–535.

    CAS  Google Scholar 

  10. Cheng, N.; Li, J. C.; Liu, D.; Lin, Y. H.; Du, D. Single-atom nanozyme based on nanoengineered Fe-N-C catalyst with superior peroxidase-like activity for ultrasensitive bioassays. Small 2019, 15, 1901485.

    CAS  Google Scholar 

  11. Chen, Y. J.; Wang, P. X.; Hao, H. G.; Hong, J. J.; Li, H. J.; Ji, S. F.; Li, A.; Gao, R.; Dong, J. C.; Han, X. D. et al. Thermal atomization of platinum nanoparticles into single atoms: An effective strategy for engineering high-performance nanozymes. J. Am. Chem. Soc. 2021, 143, 18643–18651.

    CAS  Google Scholar 

  12. Kim, M. S.; Cho, S.; Joo, S. H.; Lee, J.; Kwak, S. K.; Kim, M. I.; Lee, J. N- and B-codoped graphene: A strong candidate to replace natural peroxidase in sensitive and selective bioassays. ACS Nano 2019, 13, 4312–4321.

    CAS  Google Scholar 

  13. Cheng, Q.; Yang, Y.; Peng, Y. S.; Liu, M. Pt nanoparticles with high oxidase-like activity and reusability for detection of ascorbic acid. Nanomaterials 2020, 10, 1015.

    CAS  Google Scholar 

  14. Liu, Y.; Wu, H. H.; Chong, Y.; Wamer, W. G.; **a, Q. S.; Cai, L. N.; Nie, Z. H.; Fu, P. P.; Yin, J. J. Platinum nanoparticles: Efficient and stable catechol oxidase mimetics. ACS Appl. Mater. Interfaces 2015, 7, 19709–19717.

    CAS  Google Scholar 

  15. Wu, Y.; Wu, J. B.; Jiao, L.; Xu, W. Q.; Wang, H. J.; Wei, X. Q.; Gu, W. L.; Ren, G. X.; Zhang, N.; Zhang, Q. H. et al. Cascade reaction system integrating single-atom nanozymes with abundant Cu sites for enhanced biosensing. Anal. Chem. 2020, 92, 3373–3379.

    CAS  Google Scholar 

  16. Huang, Y. Y.; Liu, Z.; Liu, C. Q.; Ju, E. G.; Zhang, Y.; Ren, J. S.; Qu, X. G. Self-assembly of multi-nanozymes to mimic an intracellular antioxidant defense system. Angew. Chem., Int. Ed. 2016, 55, 6646–6650.

    CAS  Google Scholar 

  17. Wu, X. J.; Chen, T. M.; Chen, Y.; Yang, G. W. Modified Ti3C2 nanosheets as peroxidase mimetics for use in colorimetric detection and immunoassays. J. Mater. Chem. B 2020, 8, 2650–2659.

    CAS  Google Scholar 

  18. Wang, X. P.; Hou, C.; Qiu, W.; Ke, Y. P.; Xu, Q. C.; Liu, X. Y.; Lin, Y. H. Protein-directed synthesis of bifunctional adsorbent-catalytic hemin-graphene nanosheets for highly efficient removal of dye pollutants via synergistic adsorption and degradation. ACS Appl. Mater. Interfaces 2017, 9, 684–692.

    CAS  Google Scholar 

  19. Fan, K. L.; **, J. Q.; Fan, L.; Wang, P. X.; Zhu, C. H.; Tang, Y.; Xu, X. D.; Liang, M. M.; Jiang, B.; Yan, X. Y. et al. In vivo guiding nitrogen-doped carbon nanozyme for tumor catalytic therapy. Nat. Commun. 2018, 9, 1440.

    Google Scholar 

  20. Liu, J.; Wang, A.; Liu, S.; Yang, R.; Wang, L.; Gao, F.; Zhou, H.; Yu, X.; Liu, J.; Chen, C. A titanium nitride nanozyme for pH-responsive and irradiation-enhanced cascade-catalytic tumor therapy. Angew. Chem., Int. Ed. 2021, 60, 25328–25338.

    CAS  Google Scholar 

  21. Liu, J. B.; Hu, X. N.; Hou, S.; Wen, T.; Liu, W. Q.; Zhu, X.; Yin, J. J.; Wu, X. C. Au@Pt core/shell nanorods with peroxidase- and ascorbate oxidase-like activities for improved detection of glucose. Sens. Actuators B: Chem. 2012, 166-167, 708–714.

    Google Scholar 

  22. Song, Y. J.; Qu, K. G.; Zhao, C.; Ren, J. S.; Qu, X. G. Graphene oxide: Intrinsic peroxidase catalytic activity and its application to glucose detection. Adv. Mater. 2010, 22, 2206–2210.

    CAS  Google Scholar 

  23. Li, X.; Kong, C. Y.; Chen, Z. B. Colorimetric sensor arrays for antioxidant discrimination based on the inhibition of the oxidation reaction between 3,3’,5,5’-tetramethylbenzidine and hydrogen peroxides. ACS Appl. Mater. Interfaces 2019, 11, 9504–9509.

    CAS  Google Scholar 

  24. Carrillo-Vico, A.; Lardone, P. J.; Álvarez-Sánchez, N.; Rodríguez-Rodríguez, A.; Guerrero, J. M. Melatonin: Buffering the immune system. Int. J. Mol. Sci. 2013, 14, 8638–8683.

    Google Scholar 

  25. Ji, S. F.; Jiang, B.; Hao, H. G.; Chen, Y. J.; Dong, J. C.; Mao, Y.; Zhang, Z. D.; Gao, R.; Chen, W. X.; Zhang, R. F. et al. Matching the kinetics of natural enzymes with a single-atom iron nanozyme. Nat. Catal. 2021, 4, 407–417.

    CAS  Google Scholar 

  26. Wang, S.; Hu, Z. F.; Wei, Q. L.; Zhang, H. M.; Tang, W. N.; Sun, Y. Q.; Duan, H. Q.; Dai, Z. C.; Liu, Q. Y.; Zheng, X. W. Diatomic active sites nanozymes: Enhanced peroxidase-like activity for dopamine and intracellular H2O2 detection. Nano Res. 2022, 15, 4266–4273.

    CAS  Google Scholar 

  27. Xu, B. L.; Wang, H.; Wang, W. W.; Gao, L. Z.; Li, S. S.; Pan, X. T.; Wang, H. Y.; Yang, H. L.; Meng, X. Q.; Wu, Q. W. et al. A single-atom nanozyme for wound disinfection applications. Angew. Chem., Int. Ed. 2019, 58, 4911–4916.

    CAS  Google Scholar 

  28. Jiao, L.; Yan, H. Y.; Wu, Y.; Gu, W. L.; Zhu, C. Z.; Du, D.; Lin, Y. H. When nanozymes meet single-atom catalysis. Angew. Chem., Int. Ed. 2020, 59, 2565–2576.

    CAS  Google Scholar 

  29. **ong, Y.; Wang, S. B.; Chen, W. X.; Zhang, J.; Li, Q. H.; Hu, H. S.; Zheng, L. R.; Yan, W. S.; Gu, L.; Wang, D. S. et al. Construction of dual-active-site copper catalyst containing both Cu-N3 and Cu-N4 sites. Small 2021, 17, 2006834.

    CAS  Google Scholar 

  30. Parastaev, A.; Muravev, V.; Huertas Osta, E.; Van Hoof, A. J. F.; Kimpel, T. F.; Kosinov, N.; Hensen, E. J. M. Boosting CO2 hydrogenation via size-dependent metal—support interactions in cobalt/ceria-based catalysts. Nat. Catal. 2020, 3, 526–533.

    CAS  Google Scholar 

  31. Yan, Q. Q.; Wu, D. X.; Chu, S. Q.; Chen, Z. Q.; Lin, Y.; Chen, M. X.; Zhang, J.; Wu, X. J.; Liang, H. W. Reversing the charge transfer between platinum and sulfur-doped carbon support for electrocatalytic hydrogen evolution. Nat. Commun. 2019, 10, 4977.

    CAS  Google Scholar 

  32. **ng, L. L.; Liu, R.; Gong, Z. C.; Liu, J. J.; Liu, J. B.; Gong, H. S.; Huang, K.; Fei, H. L. Ultrafast Joule heating synthesis of hierarchically porous graphene-based Co-NC single-atom monoliths. Nano Res. 2022, 15, 3913–3919.

    CAS  Google Scholar 

  33. Sang, X. H.; **e, Y.; Lin, M. W.; Alhabeb, M.; Van Aken, K. L.; Gogotsi, Y.; Kent, P. R. C.; **ao, K.; Unocic, R. R. Atomic defects in monolayer titanium carbide (Ti3C2Tx) MXene. ACS Nano 2016, 10, 9193–9200.

    CAS  Google Scholar 

  34. Zhao, D.; Chen, Z.; Yang, W. J.; Liu, S. J.; Zhang, X.; Yu, Y.; Cheong, W. C.; Zheng, L. R.; Ren, F. Q.; Ying, G. B. et al. MXene (Ti3C2) vacancy-confined single-atom catalyst for efficient functionalization of CO2. J. Am. Chem. Soc. 2019, 141, 4086–4093.

    CAS  Google Scholar 

  35. Wu, X. H.; Wang, J. H.; Wang, Z. Y.; Sun, F.; Liu, Y. Z.; Wu, K. F.; Meng, X. Y.; Qiu, J. S. Boosting the electrocatalysis of MXenes by plasmon-induced thermalization and hot-electron injection. Angew. Chem., Int. Ed. 2021, 60, 9416–9420.

    CAS  Google Scholar 

  36. Huang, B.; Li, N.; Ong, W. J.; Zhou, N. G. Single atom-supported MXene: How single-atomic-site catalysts tune the high activity and selectivity of electrochemical nitrogen fixation. J. Mater. Chem. A 2019, 7, 27620–27631.

    CAS  Google Scholar 

  37. Kuznetsov, D. A.; Chen, Z. X.; Abdala, P. M.; Safonova, O. V.; Fedorov, A.; Müller, C. R. Single-atom-substituted Mo2CTx: Fe-layered carbide for selective oxygen reduction to hydrogen peroxide: Tracking the evolution of the MXene phase. J. Am. Chem. Soc. 2021, 143, 5771–5778.

    CAS  Google Scholar 

  38. Zhang, D.; Wang, S.; Hu, R. M.; Gu, J. N.; Cui, Y. L. S.; Li, B.; Chen, W. H.; Liu, C. T.; Shang, J. X.; Yang, S. B. Catalytic conversion of polysulfides on single atom zinc implanted MXene toward high-rate lithium-sulfur batteries. Adv. Funct. Mater. 2020, 30, 2002471.

    CAS  Google Scholar 

  39. Zhang, X.; Lei, J. C.; Wu, D. H.; Zhao, X. D.; **g, Y.; Zhou, Z. A Ti-anchored Ti2CO2 monolayer (MXene) as a single-atom catalyst for CO oxidation. J. Mater. Chem. A 2016, 4, 4871–4876.

    CAS  Google Scholar 

  40. Huang, L.; Chen, J. X.; Gan, L. F.; Wang, J.; Dong, S. J. Single-atom nanozymes. Sci. Adv. 2019, 5, eaav5490.

    CAS  Google Scholar 

  41. Hou, T. T.; Luo, Q. Q.; Li, Q.; Zu, H. L.; Cui, P. X.; Chen, S. W.; Lin, Y.; Chen, J. J.; Zheng, X. S.; Zhu, W. K. et al. Modulating oxygen coverage of Ti3C2Tx MXenes to boost catalytic activity for HCOOH dehydrogenation. Nat. Commun. 2020, 11, 4251.

    CAS  Google Scholar 

  42. Zhu, M. Z.; Zhao, C.; Liu, X. K.; Wang, X. L.; Zhou, F. Y.; Wang, J.; Hu, Y. M.; Zhao, Y. F.; Yao, T.; Yang, L. M. et al. Single atomic cerium sites with a high coordination number for efficient oxygen reduction in proton-exchange membrane fuel cells. ACS Catal. 2021, 11, 3923–3929.

    CAS  Google Scholar 

  43. Yu, M. Z.; Zhou, S.; Wang, Z. Y.; Zhao, J. J.; Qiu, J. S. Boosting electrocatalytic oxygen evolution by synergistically coupling layered double hydroxide with MXene. Nano Energy 2018, 44, 181–190.

    CAS  Google Scholar 

  44. Han, M. N.; Yang, J.; Jiang, J. T.; **g, R. W.; Ren, S. J.; Yan, C. Efficient tuning the electronic structure of N-doped Ti-based MXene to enhance hydrogen evolution reaction. J. Colloid Interface Sci. 2021, 582, 1099–1106.

    CAS  Google Scholar 

  45. Wu, Y.; Jiao, L.; Luo, X.; Xu, W. Q.; Wei, X. Q.; Wang, H. J.; Yan, H. Y.; Gu, W. L.; Xu, B. Z.; Du, D. et al. Oxidase-like Fe-N-C single-atom nanozymes for the detection of acetylcholinesterase activity. Small. 2019, 15, 1903108.

    CAS  Google Scholar 

  46. Peng, J.; Zhang, W.; Wang, J. S.; Li, L.; Lai, W. H.; Yang, Q. R.; Zhang, B. W.; Li, X. N.; Du, Y. M.; Liu, H. W. et al. Processing rusty metals into versatile Prussian blue for sustainable energy storage. Adv. Energy Mater. 2021, 11, 2102356.

    CAS  Google Scholar 

  47. Hocking, R. K.; Wasinger, E. C.; De Groot, F. M. F.; Hodgson, K. O.; Hedman, B.; Solomon, E. I. Fe L-edge XAS studies of K4[Fe(CN)6] and K3[Fe(CN)6]: A direct probe of back-bonding. J. Am. Chem. Soc. 2006, 128, 10442–10451.

    CAS  Google Scholar 

  48. Sun, X. J.; Chen, C.; **ong, C.; Zhang, C. M.; Zheng, X. S.; Wang, J.; Gao, X. P.; Yu, Z. Q.; Wu, Y. Surface modification of MoS2 nanosheets by single Ni atom for ultrasensitive dopamine detection. Nano Res., in press, https://doi.org/10.1007/s12274-022-4802-8.

  49. Xu, H.; She, X. J.; Fei, T.; Song, Y. H.; Liu, D. B.; Li, H. P.; Yang, X. F.; Yang, J. M.; Li, H. M.; Song, L. et al. Metal-oxide-mediated subtractive manufacturing of two-dimensional carbon nitride for high-efficiency and high-yield photocatalytic H2 evolution. ACS Nano 2019, 13, 11294–11302.

    CAS  Google Scholar 

  50. Zeng, H.; Li, Z. H.; Li, G. S.; Cui, X. Q.; **, M. X.; **e, T. F.; Liu, L. L.; Jiang, M. P.; Zhong, X.; Zhang, Y. W. et al. Interfacial engineering of TiO2/Ti3C2 MXene/carbon nitride hybrids boosting charge transfer for efficient photocatalytic hydrogen evolution. Adv. Energy Mater. 2022, 12, 2102765.

    CAS  Google Scholar 

  51. Chen, Y. F.; Jiao, L.; Yan, H. Y.; Xu, W. Q.; Wu, Y.; Wang, H. J.; Gu, W. L.; Zhu, C. Z. Hierarchically porous S/N codoped carbon nanozymes with enhanced peroxidase-like activity for total antioxidant capacity biosensing. Anal. Chem. 2020, 92, 13518–13524.

    CAS  Google Scholar 

  52. Zhao, C.; **ong, C.; Liu, X. K.; Qiao, M.; Li, Z. J.; Yuan, T. W.; Wang, J.; Qu, Y. T.; Wang, X. Q.; Zhou, F. Y. et al. Unraveling the enzyme-like activity of heterogeneous single atom catalyst. Chem. Commun. 2019, 55, 2285–2288.

    CAS  Google Scholar 

  53. Jiang, B.; Duan, D. M.; Gao, L. Z.; Zhou, M. J.; Fan, K. L.; Tang, Y.; **, J. Q.; Bi, Y. H.; Tong, Z.; Gao, G. F. et al. Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes. Nat. Protoc. 2018, 13, 1506–1520.

    CAS  Google Scholar 

  54. Chen, M.; Zhou, X. C.; **ong, C.; Yuan, T. W.; Wang, W. Y.; Zhao, Y. F.; Xue, Z. G.; Guo, W. X.; Wang, Q. P.; Wang, H. J. et al. Facet engineering of nanoceria for enzyme-mimetic catalysis. ACS Appl. Mater. Interfaces 2022, 14, 21989–21995.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Bei**g Natural Science Foundation (No. 2212018) and the National Natural Science Foundation of China (No. 21801015). The authors thank the BL1W1B and 4B7B in the Bei**g Synchrotron Radiation Facility (BSRF) for help with characterizations.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhuo Chen, Zhengbo Chen or Juanjuan Qi.

Electronic Supplementary Material

12274_2022_5211_MOESM1_ESM.pdf

Asymmetrically coordinated single-atom iron nanozymes with Fe-N1C2 structure: A peroxidase mimetic for melatonin detection

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, L., Li, H., Gu, H. et al. Asymmetrically coordinated single-atom iron nanozymes with Fe-N1C2 structure: A peroxidase mimetic for melatonin detection. Nano Res. 16, 4751–4757 (2023). https://doi.org/10.1007/s12274-022-5211-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5211-8

Keywords

Navigation