Log in

A high-loading and cycle-stable solid-phase conversion sulfur cathode using edible fungus slag-derived microporous carbon as sulfur host

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Develo** a high sulfur (S)-loading cathode with high capacity utilization and long term cyclability is a key challenge for commercial implementation of Li-S battery technology. To overcome this challenge, we propose a solid-phase conversion sulfur cathode by using an edible fungus slag-derived porous carbon (CFS) as sulfur host to fabricate the S/CFS composite and meanwhile, utilizing the vinyl carbonate (VC) as co-solvent of the ether-based electrolyte to in-situ form a protective layer on the S/CFS composite surface through its nucleophilic reaction with the freshly generated lithium polysulfides (LiPSs) at the very beginning of initial discharge, thus isolating the interior sulfur from the outer electrolyte and inhibiting the further generation of soluble LiPSs. Benefitting from the ultrahigh specific surface area of > 3,000 m2·g−1, ideal pore size of < 4 nm, and large pore volume of > 2.0 cm3·g−1 of the CFS host matrix, the S/CFS cathode even with a high S-loading of 80 wt.% (based on the weight of S/CFS composite) can still operate in a solid-phase conversion manner in the VC-ether co-solvent electrolyte to exhibit a high reversible capacity of 1,557 mAh·g−1, a high rate capability with 50% remaining capacity at 2 A·g−1 and a high cycling efficiency of 99.9% over 500 cycles. The results presented in this work suggest that a combined action of solid-phase conversion electrochemistry and nanoarchitectured host structure may provide a new path for the design and development of practical lithium-sulfur batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shen, X.; Liu, H.; Cheng, X. B.; Yan, C.; Huang, J. Q. Beyond lithium ion batteries: Higher energy density battery systems based on lithium metal anodes. Energy Storage Mater. 2018, 12, 161–175.

    Article  Google Scholar 

  2. Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 2012, 11, 19–29.

    Article  CAS  Google Scholar 

  3. Peng, H. J.; Huang, J. Q.; Cheng, X. B.; Zhang, Q. Review on high-loading and high-energy lithium-sulfur batteries. Adv. Energy Mater. 2017, 7, 1700260.

    Article  Google Scholar 

  4. Zhao, M.; Li, B. Q.; Peng, H. J.; Yuan, H.; Wei, J. Y.; Huang, J. Q. Lithium-sulfur batteries under lean electrolyte conditions: Challenges and opportunities. Angew. Chem., Int. Ed. 2020, 59, 12636–12652.

    Article  CAS  Google Scholar 

  5. Zhang, S. S. Liquid electrolyte lithium/sulfur battery: Fundamental chemistry, problems, and solutions. J. Power Sources 2013, 231, 153–162.

    Article  CAS  Google Scholar 

  6. Huang, L.; Li, J. J.; Liu, B.; Li, Y. H.; Shen, S. H.; Deng, S. J.; Lu, C. W.; Zhang, W. K.; **a, Y.; Pan, G. X. et al. Electrode design for lithium-sulfur batteries: Problems and solutions. Adv. Funct. Mater. 2020, 30, 1910375.

    Article  CAS  Google Scholar 

  7. Zhou, L.; Danilov, D. L.; Eichel, R. A.; Notten, P. H. L. Host materials anchoring polysulfides in Li-S batteries reviewed. Adv. Energy Mater. 2021, 11, 2001304.

    Article  CAS  Google Scholar 

  8. Zhang, J.; Yang, C. P.; Yin, Y. X.; Wan, L. J.; Guo, Y. G. Sulfur encapsulated in graphitic carbon nanocages for high-rate and long-cycle lithium-sulfur batteries. Adv. Mater. 2016, 28, 9539–9544.

    Article  CAS  Google Scholar 

  9. Li, G. C.; Li, G. R.; Ye, S. H.; Gao, X. P. A polyaniline-coated sulfur/carbon composite with an enhanced high-rate capability as a cathode material for lithium/sulfur batteries. Adv. Energy Mater. 2012, 2, 1238–1245.

    Article  CAS  Google Scholar 

  10. Zhang, Z.; Kong, L. L.; Liu, S.; Li, G. R.; Gao, X. P. A high-efficiency sulfur/carbon composite based on 3D graphene nanosheet@carbon nanotube matrix as cathode for lithium-sulfur battery. Adv. Energy Mater. 2017, 7, 1602543.

    Article  Google Scholar 

  11. Ghazi, Z. A.; He, X.; Khattak, A. M.; Khan, N. A.; Liang, B.; Iqbal, A.; Wang, J. X.; Sin, H. S.; Li, L. S.; Tang, Z. Y. MoS2/celgard separator as efficient polysulfide barrier for long-life lithium-sulfur batteries. Adv. Mater. 2017, 29, 1606817.

    Article  Google Scholar 

  12. Su, Y. S.; Manthiram, A. Lithium-sulphur batteries with a microporous carbon paper as a bifunctional interlayer. Nat. Commun. 2012, 3, 1166.

    Article  Google Scholar 

  13. Suo, L. M.; Hu, Y. S.; Li, H.; Armand, M.; Chen, L. Q. A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat. Commun. 2013, 4, 1481.

    Article  Google Scholar 

  14. Li, Y.; Zhu, J. D.; Shi, R. W.; Dirican, M.; Zhu, P.; Yan, C. Y.; Jia, H.; Zang, J.; He, J. H.; Zhang, X. W. Ultrafine and polar ZrO2-inlaid porous nitrogen-doped carbon nanofiber as efficient polysulfide absorbent for high-performance lithium-sulfur batteries with long lifespan. Chem. Eng. J. 2018, 349, 376–387.

    Article  CAS  Google Scholar 

  15. Zhu, J. D.; Chen, C.; Lu, Y.; Zang, J.; Jiang, M. J.; Kim, D.; Zhang, X. W. Highly porous polyacrylonitrile/graphene oxide membrane separator exhibiting excellent anti-self-discharge feature for high-performance lithium-sulfur batteries. Carbon 2016, 101, 272–280.

    Article  CAS  Google Scholar 

  16. Lochala, J.; Liu, D. Y.; Wu, B. B.; Robinson, C.; **ao, J. Research progress toward the practical applications of lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2017, 9, 24407–24421.

    Article  CAS  Google Scholar 

  17. Chen, X.; Yuan, L. X.; Hao, Z. X.; Liu, X. X.; **ang, J. W.; Zhang, Z. R.; Huang, Y. H.; **e, J. Free-standing Mn3O4@CNF/S paper cathodes with high sulfur loading for lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2018, 10, 13406–13412.

    Article  CAS  Google Scholar 

  18. Zhang, Z.; Wu, D. H.; Zhou, Z.; Li, G. R.; Liu, S.; Gao, X. P. Sulfur/nickel ferrite composite as cathode with high-volumetric-capacity for lithium-sulfur battery. Sci. China Mater. 2019, 62, 74–86.

    Article  CAS  Google Scholar 

  19. An, T. H.; Deng, D. R.; Lei, M.; Wu, Q. H.; Tian, Z. W.; Zheng, M. S.; Dong, Q. F. MnO modified carbon nanotubes as a sulfur host with enhanced performance in Li/S batteries. J. Mater. Chem. A 2016, 4, 12858–12864.

    Article  CAS  Google Scholar 

  20. Li, Y. J.; Fan, J. M.; Zheng, M. S.; Dong, Q. F. A novel synergistic composite with multi-functional effects for high-performance Li-S batteries. Energy Environ. Sci. 2016, 9, 1998–2004.

    Article  CAS  Google Scholar 

  21. Su, D. W.; Cortie, M.; Fan, H. B.; Wang, G. X. Prussian blue nanocubes with an open framework structure coated with PEDOT as high-capacity cathodes for lithium-sulfur batteries. Adv. Mater. 2017, 29, 1700587.

    Article  Google Scholar 

  22. Li, Z. H.; He, Q.; Xu, X.; Zhao, Y.; Liu, X. W.; Zhou, C.; Ai, D.; **a, L. X.; Mai, L. Q. A 3D nitrogen-doped graphene/TiN nanowires composite as a strong polysulfide anchor for lithium-sulfur batteries with enhanced rate performance and high areal capacity. Adv. Mater. 2018, 30, 1804089.

    Article  Google Scholar 

  23. Li, X.; Yuan, L. X.; Liu, D. Z.; **ang, J. W.; Li, Z.; Huang, Y. H. Solid/quasi-solid phase conversion of sulfur in lithium-sulfur battery. Small, in press, https://doi.org/10.1002/smll.202106970.

  24. Lei, J. Y.; Chen, J. H.; Zhang, H. M.; Naveed, A.; Yang, J.; Nuli, Y.; Wang, J. L. High molecular weight polyacrylonitrile precursor for S@pPAN composite cathode materials with high specific capacity for rechargeable lithium batteries. ACS Appl. Mater. Interfaces 2020, 12, 33702–33709.

    Article  CAS  Google Scholar 

  25. Yang, H. J.; Chen, J. H.; Yang, J.; Wang, J. L. Prospect of sulfurized pyrolyzed poly(acrylonitrile) (S@pPAN) cathode materials for rechargeable lithium batteries. Angew. Chem., Int. Ed. 2020, 59, 7306–7318.

    Article  CAS  Google Scholar 

  26. Wang, J. L.; He, Y. S.; Yang, J. Sulfur-based composite cathode materials for high-energy rechargeable lithium batteries. Adv. Mater. 2015, 27, 569–575.

    Article  CAS  Google Scholar 

  27. Zhang, S. S. Understanding of sulfurized polyacrylonitrile for superior performance lithium/sulfur battery. Energies 2014, 7, 4588–4600.

    Article  Google Scholar 

  28. Fanous, J.; Wegner, M.; Grimminger, J.; Andresen, Ä.; Buchmeiser, M. R. Structure-related electrochemistry of sulfur-poly(acrylonitrile) composite cathode materials for rechargeable lithium batteries. Chem. Mater. 2011, 23, 5024–5028.

    Article  CAS  Google Scholar 

  29. Chen, X.; Yuan, L. X.; Li, Z.; Chen, S. J.; Ji, H. J.; Qin, Y. F.; Wu, L. S.; Shen, Y.; Wang, L. B.; Hu, J. P. et al. Realizing an applicable “solid — solid” cathode process via a transplantable solid electrolyte interface for lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2019, 11, 29830–29837.

    Article  CAS  Google Scholar 

  30. Ye, J. C.; Zang, J.; Tian, Z. W.; Zheng, M. S.; Dong, Q. F. Sulfur and nitrogen co-doped hollow carbon spheres for sodium-ion batteries with superior cyclic and rate performance. J. Mater. Chem. A 2016, 4, 13223–13227.

    Article  CAS  Google Scholar 

  31. Li, X.; Banis, M.; Lushington, A.; Yang, X. F.; Sun, Q.; Zhao, Y.; Liu, C. Q.; Li, Q. Z.; Wang, B. Q.; **ao, W. et al. A high-energy sulfur cathode in carbonate electrolyte by eliminating polysulfides via solid-phase lithium-sulfur transformation. Nat. Commun. 2018, 9, 4509.

    Article  Google Scholar 

  32. He, F.; Wu, X. J.; Qian, J. F.; Cao, Y. L.; Yang, H. X.; Ai, X. P.; **a, D. G. Building a cycle-stable sulphur cathode by tailoring its redox reaction into a solid-phase conversion mechanism. J. Mater. Chem. A 2018, 6, 23396–23407.

    Article  CAS  Google Scholar 

  33. Wu, X. J.; Zhang, Q.; Tang, G.; Cao, Y. L.; Yang, H. X.; Li, H.; Ai, X. P. A solid-phase conversion sulfur cathode with full capacity utilization and superior cycle stability for lithium-sulfur batteries. Small 2022, 18, 2106144.

    Article  CAS  Google Scholar 

  34. Ma, Z. W.; Sui, W. H.; Liu, J.; Wang, W. J.; Li, S. M.; Chen, T. T.; Yang, G. L.; Zhu, K. X.; Li, Z. J. Pomelo peel-derived porous carbon as excellent LiPS anchor in lithium-sulfur batteries. J. Solid State Electrochem. 2022, 26, 973–984.

    Article  CAS  Google Scholar 

  35. He, Y. F.; Zhuang, X. D.; Lei, C. J.; Lei, L. C.; Hou, Y.; Mai, Y. Y.; Feng, X. L. Porous carbon nanosheets: Synthetic strategies and electrochemical energy related applications. Nano Today 2019, 24, 103–119.

    Article  CAS  Google Scholar 

  36. Liu, P. T.; Wang, Y. Y.; Liu, J. H. Biomass-derived porous carbon materials for advanced lithium sulfur batteries. J. Energy Chem. 2019, 34, 171–185.

    Article  Google Scholar 

  37. Hong, X. D.; Liu, Y.; Fu, J. W.; Wang, X.; Zhang, T.; Wang, S. H.; Hou, F.; Liang, J. A wheat flour derived hierarchical porous carbon/graphitic carbon nitride composite for high-performance lithium-sulfur batteries. Carbon 2020, 170, 119–126.

    Article  CAS  Google Scholar 

  38. Wang, Z. F.; Zhang, X. M.; Liu, X. L.; Zhang, Y. G.; Zhao, W. M.; Li, Y. Y.; Qin, C. L.; Bakenov, Z. High specific surface area bimodal porous carbon derived from biomass reed flowers for high performance lithium-sulfur batteries. J. Colloid Interface Sci. 2020, 569, 22–33.

    Article  CAS  Google Scholar 

  39. Li, H.; Zhao, Z. R.; Li, Y. Y.; **ang, M. W.; Guo, J. M.; Bai, H. L.; Liu, X. F.; Yang, X. Z.; Su, C. W. Waste-honeycomb-derived in situ N-doped hierarchical porous carbon as sulfur host in lithium-sulfur battery. Dalton Trans. 2022, 51, 1502–1512.

    Article  CAS  Google Scholar 

  40. Cheng, J.; Zhang, G.; Wang, P.; Wang, C. Y.; Yin, Y. X.; Li, Y. K.; Cao, F. F.; Guo, Y. G. Confined red phosphorus in edible fungus slag-derived porous carbon as an improved anode material in sodium-ion batteries. ACS Appl. Mater. Interfaces 2019, 11, 47948–47955.

    Article  CAS  Google Scholar 

  41. Wang, P.; Ye, H.; Yin, Y. X.; Chen, H.; Bian, Y. B.; Wang, Z. R.; Cao, F. F.; Guo, Y. G. Fungi-enabled synthesis of ultrahigh-surface-area porous carbon. Adv. Mater. 2019, 31, 1805134.

    Article  Google Scholar 

  42. Cheng, L.; Curtiss, L. A.; Zavadil, K. R.; Gewirth, A. A.; Shao, Y. Y.; Gallagher, K. G. Sparingly solvating electrolytes for high energy density lithium-sulfur batteries. ACS Energy Lett. 2016, 1, 503–509.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program of China (No. 2021YFB3800300) and the China Postdoctoral Science Foundation (No. 2022T150494). The authors thank the Core Facility of Wuhan University for the TGA test.

Author information

Authors

Corresponding authors

Correspondence to Feifei Cao or ** Ai.

Electronic Supplementary Material

12274_2022_5156_MOESM1_ESM.pdf

A high-loading and cycle-stable solid-phase conversion sulfur cathode using edible fungus slag-derived microporous carbon as sulfur host

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Wu, X., Jiang, S. et al. A high-loading and cycle-stable solid-phase conversion sulfur cathode using edible fungus slag-derived microporous carbon as sulfur host. Nano Res. 16, 8360–8367 (2023). https://doi.org/10.1007/s12274-022-5156-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5156-y

Keywords