Log in

Cathodic corrosion as a facile and universal method for the preparation of supported metal single atoms

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Top-down strategy has been generally adopted for preparation of metal single atom catalysts (SACs) due to the simplified synthetic process, metal economics, and scalability characteristics. Herein, we propose a general top-down route to convert metal nanoparticles into uniformly dispersed metal single atoms in mild electrochemical environment via a facile cathodic corrosion process. Within the synthetic process, Pt nanoparticles precursors are transformed into migrating Pt single atoms (Pt1) driven by a high negative potential; and subsequently these mobile Pt atoms are trapped and stabilized by N coordination sites of N-doped carbon paper (NCP). The as-prepared Pt1/NCP electrodes exhibit a superior catalytic activity toward hydrogen evolution reaction (HER) with a low overpotential of 0.022 V at 10 mA/cm2 and a low Tafel slope of 28.5 mV/dec as well as a long-term durability. Notably, the proposed electrochemical atomic migration strategy shows a promising generality for fabricating other metal single atoms (e.g., Pd, Ir, Cu), which may open a new avenue for metallic SACs preparation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sultan, S.; Tiwari, J. N.; Singh, A. N.; Zhumagali, S.; Ha, M.; Myung, C. W.; Thangavel, P.; Kim, K. S. Single atoms and clusters based nanomaterials for hydrogen evolution, oxygen evolution reactions, and full water splitting. Adv. Energy Mater. 2019, 9, 1900624.

    Article  Google Scholar 

  2. Zhu, C. Z.; Fu, S. F.; Shi, Q. R.; Du, D.; Lin, Y. H. Single-atom electrocatalysts. Angew. Chem., Int. Ed. 2017, 56, 13944–13960.

    Article  CAS  Google Scholar 

  3. Liang, S. X.; Hao, C.; Shi, Y. T. The power of single-atom catalysis. ChemCatChem 2015, 7, 2559–2567.

    Article  CAS  Google Scholar 

  4. Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641.

    Article  CAS  Google Scholar 

  5. Li, Z.; Ji, S. F.; Liu, Y. W.; Cao, X.; Tian, S. B.; Chen, Y. J.; Niu, Z. G.; Li, Y. D. Well-defined materials for heterogeneous catalysis: From nanoparticles to isolated single-atom sites. Chem. Rev. 2020, 120, 623–682.

    Article  CAS  Google Scholar 

  6. Zhang, N. Q.; Ye, C. L.; Yan, H.; Li, L. C.; He, H.; Wang, D. S.; Li, Y. D. Single-atom site catalysts for environmental catalysis. Nano Res. 2020, 13, 3165–3182.

    Article  CAS  Google Scholar 

  7. Zhao, D.; Zhuang, Z. W.; Cao, X.; Zhang, C.; Peng, Q.; Chen, C.; Li, Y. D. Atomic site electrocatalysts for water splitting, oxygen reduction and selective oxidation. Chem. Soc. Rev. 2020, 49, 2215–2264.

    Article  CAS  Google Scholar 

  8. Zhang, T. J.; Chen, Z. Y.; Walsh, A. G.; Li, Y.; Zhang, P. Singleatom catalysts supported by crystalline porous materials: Views from the inside. Adv. Mater. 2020, 32, 2002910.

    Article  CAS  Google Scholar 

  9. Wang, X. Y.; Sang, X. H.; Dong, C. L.; Yao, S. Y.; Shuai, L.; Lu, J. G.; Yang, B.; Li, Z. J.; Lei, L. C.; Qiu, M. et al. Proton capture strategy for enhancing electrochemical CO2 reduction on atomically dispersed metal-nitrogen active sites. Angew. Chem., Int. Ed. 2021, 60, 11959–11965.

    Article  CAS  Google Scholar 

  10. Li, Y.; Li, J. W.; Huang, J. H.; Chen, J. X.; Kong, Y.; Yang, B.; Li, Z. J.; Lei, L. C.; Chai, G. L.; Wen, Z. H. et al. Boosting electroreduction kinetics of nitrogen to ammonia via tuning electron distribution of single-atomic iron sites. Angew. Chem., Int. Ed. 2021, 60, 9078–9085.

    Article  CAS  Google Scholar 

  11. Ye, C. L.; Zhang, N. Q.; Wang, D. S.; Li, Y. D. Single atomic site catalysts: Synthesis, characterization, and applications. Chem. Commun. 2020, 56, 7687–7697.

    Article  CAS  Google Scholar 

  12. Chen, Y. J.; Ji, S. F.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysts: Synthetic strategies and electrochemical applications. Joule 2018, 2, 1242–1264.

    Article  CAS  Google Scholar 

  13. Zhang, L.; Doyle-Davis, K.; Sun, X. L. Pt-based electrocatalysts with high atom utilization efficiency: From nanostructures to single atoms. Energy Environ. Sci. 2019, 12, 492–517.

    Article  CAS  Google Scholar 

  14. Xu, J. S.; Li, R.; Xu, C. Q.; Zeng, R. G.; Jiang, Z.; Mei, B. B.; Li, J.; Meng, D. Q.; Chen, J. Underpotential-deposition synthesis and inline electrochemical analysis of single-atom copper electrocatalysts. Appl. Catal. B: Environ. 2021, 289, 120028.

    Article  CAS  Google Scholar 

  15. Ye, X. X.; Wang, H. W.; Lin, Y.; Liu, X. Y.; Cao, L. N.; Gu, J.; Lu, J. L. Insight of the stability and activity of platinum single atoms on ceria. Nano Res. 2019, 12, 1401–1409.

    Article  CAS  Google Scholar 

  16. Fei, H. L.; Dong, J. C.; Wan, C. Z.; Zhao, Z. P.; Xu, X.; Lin, Z. Y.; Wang, Y. L.; Liu, H. T.; Zang, K. T.; Luo, J. et al. Microwave-assisted rapid synthesis of graphene-supported single atomic metals. Adv. Mater. 2018, 30, 1802146.

    Article  Google Scholar 

  17. Xue, Y. R.; Huang, B. L.; Yi, Y. P.; Guo, Y.; Zuo, Z. C.; Li, Y. J.; Jia, Z. Y.; Liu, H. B.; Li, Y. L. Anchoring zero valence single atoms of nickel and iron on graphdiyne for hydrogen evolution. Nat. Commun. 2018, 9, 1460.

    Article  Google Scholar 

  18. Xu, J. S.; Li, R.; Zeng, R. G.; Yan, X. Y.; Zhao, Q. K.; Ba, J. W.; Luo, W. H.; Meng, D. Q. Platinum single atoms supported on nanoarray-structured nitrogen-doped graphite foil with enhanced catalytic performance for hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2020, 12, 38106–38112.

    Article  CAS  Google Scholar 

  19. Li, T. F.; Liu, J. J.; Song, Y.; Wang, F. Photochemical solid-phase synthesis of platinum single atoms on nitrogen-doped carbon with high loading as bifunctional catalysts for hydrogen evolution and oxygen reduction reactions. ACS Catal. 2018, 8, 8450–8458.

    Article  CAS  Google Scholar 

  20. Lin, Y. C.; Liu, P. Y.; Velasco, E.; Yao, G.; Tian, Z. Q.; Zhang, L. J.; Chen, L. Fabricating single-atom catalysts from chelating metal in open frameworks. Adv. Mater. 2019, 31, 1808193.

    Article  Google Scholar 

  21. Li, Z. J.; Ren, Q. H.; Wang, X. X.; Chen, W. X.; Leng, L. P.; Zhang, M. Y.; Horton, J. H.; Liu, B.; Xu, Q.; Wu, W. et al. Highly active and stable palladium single-atom catalyst achieved by a thermal atomization strategy on an SBA-15 molecular sieve for semi-hydrogenation reactions. ACS Appl. Mater. Interfaces 2021, 13, 2530–2537.

    Article  CAS  Google Scholar 

  22. Lang, R.; **, W.; Liu, J. C.; Cui, Y. T.; Li, T. B.; Lee, A. F.; Chen, F.; Chen, Y.; Li, L.; Li, L. et al. Non defect-stabilized thermally stable single-atom catalyst. Nat. Commun. 2019, 10, 234.

    Article  Google Scholar 

  23. Wang, T. T.; Sang, X. H.; Zheng, W. Z.; Yang, B.; Yao, S. Y.; Lei, C. J.; Li, Z. J.; He, Q. G.; Lu, J. G.; Lei, L. C. et al. Gas diffusion strategy for inserting atomic iron sites into graphitized carbon supports for unusually high-efficient CO2 electroreduction and high-performance Zn-CO2 batteries. Adv. Mater. 2020, 32, 2002430.

    Article  CAS  Google Scholar 

  24. Qu, Y. T.; Li, Z. J.; Chen, W. X.; Lin, Y.; Yuan, T. W.; Yang, Z. K.; Zhao, C. M.; Wang, J.; Zhao, C.; Wang, X. et al. Direct transformation of bulk copper into copper single sites via emitting and trap** of atoms. Nat. Catal. 2018, 1, 781–786.

    Article  CAS  Google Scholar 

  25. Yang, H. Z.; Shang, L.; Zhang, Q. H.; Shi, R.; Waterhouse, G. I. N.; Gu, L.; Zhang, T. R. A universal ligand mediated method for large scale synthesis of transition metal single atom catalysts. Nat. Commun. 2019, 10, 4585.

    Article  Google Scholar 

  26. Ji, S. F.; Chen, Y. J.; Wang, X. L.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Chemical synthesis of single atomic site catalysts. Chem. Rev. 2020, 120, 11900–11955.

    Article  CAS  Google Scholar 

  27. Qu, T. T.; Chen, B. X.; Li, Z. J.; Duan, X. Z.; Wang, L. G.; Lin, Y.; Yuan, T. W.; Zhou, F. Y.; Hu, Y. D.; Yang, Z. K. et al. Thermal emitting strategy to synthesize atomically dispersed Pt metal sites from bulk Pt metal. J. Am. Chem. Soc. 2019, 141, 4505–4509.

    Article  CAS  Google Scholar 

  28. Yang, J.; Qiu, Z. Y.; Zhao, C. M.; Wei, W. C.; Chen, W. X.; Li, Z. J.; Qu, Y. T.; Dong, J. C.; Luo, J.; Li, Z. Y. et al. In situ thermal atomization to convert supported nickel nanoparticles into surface-bound nickel single-atom catalysts. Angew. Chem., Int. Ed. 2018, 57, 14095–14100.

    Article  CAS  Google Scholar 

  29. Zhang, E. H.; Wang, T.; Yu, K.; Liu, J.; Chen, W. X.; Li, A.; Rong, H. P.; Lin, R.; Ji, S. F.; Zheng, X. S. et al. Bismuth single atoms resulting from transformation of metal-organic frameworks and their use as electrocatalysts for CO2 reduction. J. Am. Chem. Soc. 2019, 141, 16569.

    Article  CAS  Google Scholar 

  30. Yang, Z. K.; Chen, B. X.; Chen, W. X.; Qu, Y. T.; Zhou, F. Y.; Zhao, C. M.; Xu, Q.; Zhang, Q. H.; Duan, X. Z.; Wu, Y. Directly transforming copper (I) oxide bulk into isolated single-atom copper sites catalyst through gas-transport approach. Nat. Commun. 2019, 10, 3734.

    Article  Google Scholar 

  31. Qu, Y. T.; Wang, L. G.; Li, Z. J.; Li, P.; Zhang, Q. H.; Lin, Y.; Zhou, F. Y.; Wang, H. J.; Yang, Z. K.; Hu, Y. D. et al. Ambient synthesis of single-atom catalysts from bulk metal via trap** of atoms by surface dangling bonds. Adv. Mater. 2019, 31, 1904496.

    Article  CAS  Google Scholar 

  32. Zhou, H.; Zhao, Y. F.; Xu, J.; Sun, H. R.; Li, Z. J.; Liu, W.; Yuan, T. W.; Wang, X. Q.; Cheong, W. O.; Wang, Z. Y. et al. Recover the activity of sintered supported catalysts by nitrogen-doped carbon atomization. Nat. Commun. 2020, 11, 335.

    Article  CAS  Google Scholar 

  33. Singh, B.; Sharma, V.; Gaikwad, R. P.; Fornasiero, P.; Zbořil, R.; Gawande, M. B. Single-atom catalysts: A sustainable pathway for the advanced catalytic applications. Small 2021, 17, 2006473.

    Article  CAS  Google Scholar 

  34. Hersbach, T. J. P.; Yanson, A. I.; Koper, M. T. M. Anisotropic etching of platinum electrodes at the onset of cathodic corrosion. Nat. Commun. 2016, 7, 12653.

    Article  CAS  Google Scholar 

  35. Yang, Y. C.; Qiao, B. H.; Wu, Z. P.; Ji, X. B. Cathodic corrosion: An electrochemical approach to capture Zintl compounds for powder materials. J. Mater. Chem. A 2015, 3, 5328–5336.

    Article  CAS  Google Scholar 

  36. Yanson, A. I.; Rodriguez, P.; Garcia-Araez, N.; Mom, R. V.; Tichelaar, F. D.; Koper, M. T. M. Cathodic corrosion: A quick, clean, and versatile method for the synthesis of metallic nanoparticles. Angew. Chem., Int. Ed. 2011, 50, 6346–6350.

    Article  CAS  Google Scholar 

  37. Rodriguez, P.; Tichelaar, F. D.; Koper, M. T. M.; Yanson, A. I. Cathodic corrosion as a facile and effective method to prepare clean metal alloy nanoparticles. J. Am. Chem. Soc. 2011, 133, 17626–17629.

    Article  CAS  Google Scholar 

  38. Feng, J. C.; Chen, D.; Sediq, A. S.; Romeijn, S.; Tichelaar, F. D.; Jiskoot, W.; Yang, J.; Koper, M. T. M. Cathodic corrosion of a bulk wire to nonaggregated functional nanocrystals and nanoalloys. ACS Appl. Mater. Interfaces 2018, 10, 9532–9540.

    Article  CAS  Google Scholar 

  39. Yanson, A. I.; Antonov, P. V.; Yanson, Y. I.; Koper, M. T. M. Controlling the size of platinum nanoparticles prepared by cathodic corrosion. Electrochim. Acta 2013, 110, 796–800.

    Article  CAS  Google Scholar 

  40. Najdovski, I.; Selvakannan, P. R.; O’Mullane, A. P. Cathodic corrosion of Cu substrates as a route to nanostructured Cu/M (M=Ag, Au, Pd) surfaces. ChemElectroChem 2015, 2, 106–111.

    Article  CAS  Google Scholar 

  41. Li, R.; Xu, J. S.; Lu, C.; Huang, Z. Y.; Wu, Q. W.; Ba, J. W.; Tang, T.; Meng, D. Q.; Luo, W. H. Amorphous NiFe phosphides supported on nanoarray-structured nitrogen-doped carbon paper for highperformance overall water splitting. Electrochim. Acta 2020, 357, 136873.

    Article  CAS  Google Scholar 

  42. Ouyang, B.; Zhang, Y. Q.; Wang, Y.; Zhang, Z.; Fan, H. J.; Rawat, R. S. Plasma surface functionalization induces nanostructuring and nitrogen-do** in carbon cloth with enhanced energy storage performance. J. Mater. Chem. A 2016, 4, 17801–17808.

    Article  CAS  Google Scholar 

  43. Liu, Z. J.; Zhao, Z. H.; Wang, Y. Y.; Dou, S.; Yan, D. F.; Liu, D. D.; **a, Z. H.; Wang, S. Y. In situ exfoliated, edge-rich, oxygen-functionalized graphene from carbon fibers for oxygen electrocatalysis. Adv. Mater. 2017, 29, 1606207.

    Article  Google Scholar 

  44. Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.

    Article  CAS  Google Scholar 

  45. Xu, J. S.; Li, R.; Qian, X. J.; Ba, J. W.; Wu, Q. W.; Luo, W. H.; Meng, D. Q. Nanoarray-structured nitrogen-doped graphite foil as the support of NiFe layered double hydroxides for enhancing oxygen evolution reaction. J. Power Sources 2020, 469, 228419.

    Article  CAS  Google Scholar 

  46. Wang, X. Y.; Wang, Y.; Sang, X. H.; Zheng, W. Z.; Zhang, S. H.; Shuai, L.; Yang, B.; Li, Z. J.; Chen, J. M.; Lei, L. C. et al. Dynamic activation of adsorbed intermediates via axial traction for the promoted electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 4192–4198.

    Article  CAS  Google Scholar 

  47. Zheng, W. Z.; Wang, Y.; Shuai, L.; Wang, X. Y.; He, F.; Lei, C. J.; Li, Z. J.; Yang, B.; Lei, L. C.; Yuan, C. et al. Highly boosted reaction kinetics in carbon dioxide electroreduction by surface-introduced electronegative dopants. Adv. Funct. Mater. 2021, 31, 2008146.

    Article  CAS  Google Scholar 

  48. Mamme, M. H.; Köhn, C.; Deconinck, J.; Ustarroz, J. Numerical insights into the early stages of nanoscale electrodeposition: Nanocluster surface diffusion and aggregative growth. Nanoscale 2018, 10, 7194–7209.

    Article  CAS  Google Scholar 

  49. Liu, J. L.; Zhu, D. D.; Zheng, Y.; Vasileff, A.; Qiao, S. Z. Self-supported earth-abundant nanoarrays as efficient and robust electrocatalysts for energy-related reactions. ACS Catal. 2018, 8, 6707–6732.

    Article  CAS  Google Scholar 

  50. Liu, J.; Jiao, M. G.; Lu, L. L.; Barkholtz, H. M.; Li, Y. P.; Wang, Y.; Jiang, L. H.; Wu, Z. J.; Liu, D. J.; Zhuang, L. et al. High performance platinum single atom electrocatalyst for oxygen reduction reaction. Nat. Commun. 2017, 8, 16160.

    Article  CAS  Google Scholar 

  51. Jiang, K.; Siahrostami, S.; Akey, A. J.; Li, Y. B.; Lu, Z. Y.; Lattimer, J.; Hu, Y. F.; Stokes, C.; Gangishetty, M.; Chen, G. X. et al. Transition-metal single atoms in a graphene shell as active centers for highly efficient artificial photosynthesis. Chem 2017, 3, 950–960.

    Article  CAS  Google Scholar 

  52. Hersbach, T. J. P.; McCrum, I. T.; Anastasiadou, D.; Wever, R.; Calle-Vallejo, F.; Koper, M. T. M. Alkali metal cation effects in structuring Pt, Rh, and Au surfaces through cathodic corrosion. ACS Appl. Mater. Interfaces 2018, 10, 39363–39379.

    Article  CAS  Google Scholar 

  53. Hersbach, T. J. P.; Kortlever, R.; Lehtimäki, M.; Krtil, P.; Koper, M. T. M. Local structure and composition of PtRh nanoparticles produced through cathodic corrosion. Phys. Chem. Chem. Phys. 2017, 19, 10301–10308.

    Article  CAS  Google Scholar 

  54. Vanrenterghem, B.; Bele, M.; Zepeda, F. R.; Šala, M.; Hodnik, N.; Breugelmans, T. Cutting the Gordian knot of electrodeposition via controlled cathodic corrosion enabling the production of supported metal nanoparticles below 5 nm. Appl. Catal. B: Environ. 2018, 226, 396–402.

    Article  CAS  Google Scholar 

  55. Liu, J. C.; **ao, H.; Li, J. Constructing high-loading single-atom/cluster catalysts via an electrochemical potential window strategy. J. Am. Chem. Soc. 2020, 142, 3375–3383.

    Article  CAS  Google Scholar 

  56. Wei, S. J.; Li, A.; Liu, J. C.; Li, Z.; Chen, W. X.; Gong, Y.; Zhang, Q. H.; Cheong, W. C.; Wang, Y.; Zheng, L. R. et al. Direct observation of noble metal nanoparticles transforming to thermally stable single atoms. Nat. Nanotechnol. 2018, 13, 856–861.

    Article  CAS  Google Scholar 

  57. Liu, W. P.; Ji, J.; Yan, X. C.; Liu, W. B.; Huang, Y. C.; Wang, K.; **, P.; Yao, X. D.; Jiang, J. Z. A cascade surface immobilization strategy to access high-density and closely distanced atomic Pt sites for enhancing alkaline hydrogen evolution reaction. J. Mater. Chem. A 2020, 8, 5255–5262.

    Article  CAS  Google Scholar 

  58. Wang, Z. Y.; Yang, J.; Gan, J.; Chen, W. X.; Zhou, F. Y.; Zhou, X.; Yu, Z. Q.; Zhu, J. F.; Duan, X. Z.; Wu, Y. E. Electrochemical conversion of bulk platinum into platinum single-atom sites for the hydrogen evolution reaction. J. Mater. Chem. A 2020, 8, 10755–10760.

    Article  CAS  Google Scholar 

  59. Lu, F.; Yi, D.; Liu, S. J.; Zhan, F.; Zhou, B.; Gu, L.; Golberg, D.; Wang, X.; Yao, J. N. Engineering platinum-oxygen dual catalytic sites via charge transfer towards highly efficient hydrogen evolution. Angew. Chem., Int. Ed. 2020, 59, 17712–17718.

    Article  CAS  Google Scholar 

  60. Ye, S. H.; Luo, F. Y.; Zhang, Q. L.; Zhang, P. Y.; Xu, T. T.; Wang, Q.; He, D. S.; Guo, L. C.; Zhang, Y.; He, C. X. et al. Highly stable single Pt atomic sites anchored on aniline-stacked graphene for hydrogen evolution reaction. Energy Environ. Sci. 2019, 12, 1000–1007.

    Article  CAS  Google Scholar 

  61. Chi, K.; Chen, Z. X.; **ao, F.; Guo, W.; **, W.; Liu, J.; Yan, H.; Zhang, Z. Y.; **ao, J.; Liu, J. et al. Maximizing the utility of single atom electrocatalysts on a 3D graphene nanomesh. J. Mater. Chem. A 2019, 7, 15575–15579.

    Article  CAS  Google Scholar 

  62. Kuang, P. Y.; Wang, Y. R.; Zhu, B. C.; **a, F. J.; Tung, C. W.; Wu, J. S.; Chen, H. M.; Yu, J. G. Pt single atoms supported on N-doped mesoporous hollow carbon spheres with enhanced electrocatalytic H2-evolution activity. Adv. Mater. 2021, 33, 2008599.

    Article  CAS  Google Scholar 

  63. Yin, X. P.; Wang, H. J.; Tang, S. F.; Lu, X. L.; Shu, M.; Si, R.; Lu, T. B. Engineering the coordination environment of single-atom platinum anchored on graphdiyne for optimizing electrocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2018, 57, 9382–9386.

    Article  CAS  Google Scholar 

  64. Wei, H. H.; Wu, H. B.; Huang, K.; Ge, B. H.; Ma, J. Y.; Lang, J. L.; Zu, D.; Lei, M.; Yao, Y. G.; Guo, W. et al. Ultralow-temperature photochemical synthesis of atomically dispersed Pt catalysts for the hydrogen evolution reaction. Chem. Sci. 2019, 10, 2830–2836.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by Foundation from Institute of Materials CAEP (Nos. TP03201703, TP03201802, and CX2019018) and the National Natural Science Foundation of China (Nos. 51701192 and 21706246).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to **gsong Xu or Wenhua Luo.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, R., Xu, J., Zhao, Q. et al. Cathodic corrosion as a facile and universal method for the preparation of supported metal single atoms. Nano Res. 15, 1838–1844 (2022). https://doi.org/10.1007/s12274-021-3767-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3767-3

Keywords

Navigation