Log in

Converting Co2+-impregnated g-C3N4 into N-doped CNTs-confined Co nanoparticles for efficient hydrogenation rearrangement reactions of furanic aldehydes

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The cyclopentanone and derivatives are a class of crucial fine chemicals for various industries and currently produced by conventional petrochemical synthetic routes. Here, we demonstrated a new synthetic approach to directly fabricate N-doped carbon nanotube (N-CNTs) networks with confined Co nanoparticles from Co2+-impregnated bulk g-C3N4 as high performance hydrogenation rearrangement (HR) catalyst to efficiently convert a wide spectrum of biomass-derived furanic aldehydes to the corresponding cyclopentanones in water under a record-low H2 pressure of 0.5 MPa and mild temperature. We unveiled a Co-catalysed bulk g-C3N4 decomposition/carbonisation CNTs formation mechanism. A new HR pathway was also unveiled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mariscal, R.; Maireles-Torres, P.; Ojeda, M.; Sádaba, I.; Granados, M. L. Furfural: A renewable and versatile platform molecule for the synthesis of chemicals and fuels. Energy Environ. Sci. 2016, 9, 1144–1189.

    Article  CAS  Google Scholar 

  2. Gérardy, R.; Debecker, D. P.; Estager, J.; Luis, P.; Monbaliu, J. C. M. Continuous flow upgrading of selected C2-C6 platform chemicals derived from biomass. Chem. Rev. 2020, 120, 7219–7347.

    Article  Google Scholar 

  3. Chen, S.; Wojcieszak, R.; Dumeignil, F.; Marceau, E.; Royer, S. How catalysts and experimental conditions determine the selective hydroconversion of furfural and 5-hydroxymethylfurfural. Chem. Rev. 2018, 118, 11023–11117.

    Article  CAS  Google Scholar 

  4. Li, G. Y.; Hou, B. L.; Wang, A. Q.; **n, X. L.; Cong, Y.; Wang, X. D.; Li, N.; Zhang, T. Making JP-10 superfuel affordable with a lignocellulosic platform compound. Angew. Chem., Int. Ed. 2019, 58, 12154–12158.

    Article  CAS  Google Scholar 

  5. Sudarsanam, P.; Zhong, R. Y.; Van Den Bosch, S.; Coman, S. M.; Parvulescu, V. I.; Sels, B. F. Functionalised heterogeneous catalysts for sustainable biomass valorisation. Chem. Soc. Rev. 2018, 47, 8349–8402.

    Article  CAS  Google Scholar 

  6. Gong, W. B.; Chen, C.; Zhang, Y.; Zhou, H. J.; Wang, H. M.; Zhang, H. M.; Zhang, Y. X.; Wang, G. Z.; Zhao, H. J. Efficient synthesis of furfuryl alcohol from H2-hydrogenation/transfer hydrogenation of furfural using sulfonate group modified Cu catalyst. ACS Sustainable Chem. Eng. 2017, 5, 2172–2180.

    Article  CAS  Google Scholar 

  7. Gong, W. B.; Chen, C.; Fan, R. Y.; Zhang, H. M.; Wang, G. Z.; Zhao, H. J. Transfer-hydrogenation of furfural and levulinic acid over supported copper catalyst. Fuel 2018, 231, 165–171.

    Article  CAS  Google Scholar 

  8. Chen, K.; Ling, J. L.; Wu, C. D. In situ generation and stabilization of accessible Cu/Cu2O heterojunctions inside organic frameworks for highly efficient catalysis. Angew. Chem., Int. Ed. 2020, 59, 1925–1931.

    Article  CAS  Google Scholar 

  9. Mironenko, A. V.; Vlachos, D. G. Conjugation-driven “reverse Mars-van Krevelen”-type radical mechanism for low-temperature C-O bond activation. J. Am. Chem. Soc. 2016, 138, 8104–8113.

    Article  CAS  Google Scholar 

  10. Wang, C. T.; Liu, Z. Q.; Wang, L.; Dong, X.; Zhang, J.; Wang, G. X.; Han, S. C.; Meng, X. J.; Zheng, A. M.; **ao, F. S. Importance of zeolite wettability for selective hydrogenation of furfural over Pd@zeolite catalysts. ACS Catal. 2018, 5, 474–481.

    Article  CAS  Google Scholar 

  11. Hronec, M.; Fulajtárova, K.; Liptaj, T.; Štolcová, M.; Prónayová, N.; Soták, T. Cyclopentanone: A raw material for production of C15 and C17 fuel precursors. Biomass Bioenerg. 2014, 63, 291–299.

    Article  CAS  Google Scholar 

  12. Renz, M. Ketonization of carboxylic acids by decarboxylation: Mechanism and scope. Eur. J. Org. Chem. 2005, 6, 979–988.

    Article  Google Scholar 

  13. Deng, Q.; Gao, R.; Li, X.; Wang, J.; Zeng, Z. L.; Zou, J. J.; Deng, S. G. Hydrogenative ring-rearrangement of biobased furanic aldehydes to cyclopentanone compounds over Pd/pyrochlore by introducing oxygen vacancies. ACS Catal. 2020, 10, 7355–7366.

    Article  CAS  Google Scholar 

  14. Li, X.; Deng, Q.; Zhou, S. H.; Zou, J. D.; Wang, J.; Wang, R.; Zeng, Z. L.; Deng, S. G. Double-metal cyanide-supported Pd catalysts for highly efficient hydrogenative ring-rearrangement of biomass-derived furanic aldehydes to cyclopentanone compounds. J. Catal. 2019, 378, 201–208.

    Article  CAS  Google Scholar 

  15. Hronec, M.; Fulajtárová, K.; Vávra, I.; Soták, T.; Dobročka, E.; Mičušík, M. Carbon supported Pd-Cu catalysts for highly selective rearrangement of furfural to cyclopentanone. Appl. Catal. B Environ. 2016, 181, 210–219.

    Article  CAS  Google Scholar 

  16. Zhang, G. S.; Zhu, M. M.; Zhang, Q.; Liu, Y. M.; He, H. Y.; Cao, Y. Towards quantitative and scalable transformation of furfural to cyclopentanone with supported gold catalysts. Green Chem. 2016, 18, 2155–2164.

    Article  CAS  Google Scholar 

  17. Liu, C. Y.; Wei, R. P.; Geng, G. L.; Zhou, M. H.; Gao, L. J.; **ao, G. M. Aqueous-phase catalytic hydrogenation of furfural over Ni-bearing hierarchical Y zeolite catalysts synthesized by a facile route. Fuel Process. Technol. 2015, 134, 168–174.

    Article  CAS  Google Scholar 

  18. Yang, Y. L.; Du, Z. T.; Huang, Y. Z.; Lu, F.; Wang, F.; Gao, J.; Xu, J. Conversion of furfural into cyclopentanone over Ni-Cu bimetallic catalysts. Green Chem. 2013, 15, 1932–1940.

    Article  CAS  Google Scholar 

  19. Zhang, S. J.; Ma, H.; Sun, Y. X.; Luo, Y.; Liu, X.; Zhang, M. Y.; Gao, J.; Xu, J. Catalytic selective hydrogenation and rearrangement of 5-hydroxymethylfurfural to 3-hydroxymethyl-cyclopentone over a bimetallic nickel-copper catalyst in water. Green Chem. 2019, 21, 1702–1709.

    Article  CAS  Google Scholar 

  20. Li, X. L.; Deng, J.; Shi, J.; Pan, T.; Yu, C. G.; Xu, H. J.; Fu, Y. Selective conversion of furfural to cyclopentanone or cyclopentanol using different preparation methods of Cu-Co catalysts. Green Chem. 2015, 17, 1038–1046.

    Article  CAS  Google Scholar 

  21. Jia, P.; Lan, X. C.; Li, X. D.; Wang, T. F. Highly selective hydrogenation of furfural to cyclopentanone over a NiFe bimetallic catalyst in a methanol/water solution with a solvent effect. ACS Sustainable Chem. Eng. 2019, 7, 15221–15229.

    Article  CAS  Google Scholar 

  22. Wang, Y.; Sang, S. Y.; Zhu, W.; Gao, L. J.; **ao, G. M. CuNi@C catalysts with high activity derived from metal-organic frameworks precursor for conversion of furfural to cyclopentanone. Chem. Eng. J. 2016, 299, 104–111.

    Article  CAS  Google Scholar 

  23. Kumar, T. R.; Kumar, G. G.; Manthiram, A. Biomass-derived 3D carbon aerogel with carbon shell-confined binary metallic nanoparticles in CNTs as an efficient electrocatalyst for microfluidic direct ethylene glycol fuel cells. Adv. Energy Mater. 2019, 9, 1803238.

    Article  Google Scholar 

  24. Zuo, X. T.; Zhen, M. M.; Wang, C. Ni@N-doped graphene nanosheets and CNTs hybrids modified separator as efficient polysulfide barrier for high-performance lithium sulfur batteries. Nano Res. 2019, 12, 829–836.

    Article  CAS  Google Scholar 

  25. Wu, Y. Q.; Tao, X.; Qing, Y.; Xu, H.; Yang, F.; Luo, S.; Tian, C. H.; Liu, M.; Lu, X. H. Cr-doped FeNi-P nanoparticles encapsulated into N-doped carbon nanotube as a robust bifunctional catalyst for efficient overall water splitting. Adv. Mater. 2019, 31, 1900178.

    Article  Google Scholar 

  26. Zou, X. X.; Huang, X. X.; Goswami, A.; Silva, R.; Sathe, B. R.; Mikmeková, E.; Asefa, T. Cobalt-embedded nitrogen-rich carbon nanotubes efficiently catalyze hydrogen evolution reaction at all pH values. Angew. Chem., Int. Ed. 2014, 53, 4372–4376.

    Article  CAS  Google Scholar 

  27. Zhang, J. T.; Yu, L.; Lou, X. W. Embedding CoS2 nanoparticles in N-doped carbon nanotube hollow frameworks for enhanced lithium storage properties. Nano Res. 2017, 10, 4298–4304.

    Article  CAS  Google Scholar 

  28. Zhao, X. J.; Pachfule, P.; Li, S.; Simke, J. R. J.; Schmidt, J.; Thomas, A. Bifunctional electrocatalysts for overall water splitting from an iron/nickel-based bimetallic metal-organic framework/dicyandiamide composite. Angew. Chem., Int. Ed. 2018, 57, 8921–8926.

    Article  CAS  Google Scholar 

  29. Gong, W. B.; Lin, Y.; Chen, C.; Al-Mamun, M.; Lu, H. S.; Wang, G. Z.; Zhang, H. M.; Zhao, H. J. Nitrogen-doped carbon nanotube confined Co-Nx sites for selective hydrogenation of biomass-derived compounds. Adv. Mater. 2019, 31, 1808341.

    Article  Google Scholar 

  30. Wang, R. W.; Yan, T. T.; Han, L. P.; Chen, G. R.; Li, H. R.; Zhang, J. P.; Shi, L. Y.; Zhang, D. S. Tuning the dimensions and structures of nitrogen-doped carbon nanomaterials derived from sacrificial g-C3N4/metal-organic frameworks for enhanced electrocatalytic oxygen reduction. J. Mater. Chem. A 2018, 6, 5752–5761.

    Article  CAS  Google Scholar 

  31. Yan, S. C.; Li, Z. S.; Zou, Z. G. Photodegradation performance of g-C3N4 fabricated by directly heating melamine. Langmuir 2009, 25, 10397–10401.

    Article  CAS  Google Scholar 

  32. Zhang, X. H.; Lu, P.; Cui, X. Z.; Chen, L. S.; Zhang, C.; Li, M. L.; Xu, Y. F.; Shi, J. L. Probing the electro-catalytic ORR activity of cobalt-incorporated nitrogen-doped CNTs. J. Catal. 2016, 344, 455–464.

    Article  CAS  Google Scholar 

  33. Wei, Z. Z.; Wang, J.; Mao, S. J.; Su, D. F.; **, H. Y.; Wang, Y. H.; Xu, F.; Li, H. R.; Wang, Y. In situ-generated Co0-Co3O4/N-Doped carbon nanotubes hybrids as efficient and chemoselective catalysts for hydrogenation of nitroarenes. ACS Catal. 2015, 5, 4783–4789.

    Article  CAS  Google Scholar 

  34. Nie, R. F.; Miao, M.; Du, W. C.; Shi, J. J.; Liu, Y. C.; Hou, Z. Y. Selective hydrogenation of C=C bond over N-doped reduced graphene oxides supported Pd catalyst. Appl. Catal. B Environ. 2016, 180, 607–613.

    Article  CAS  Google Scholar 

  35. Li, C. E.; Wong, L.; Tang, L. G.; Scarlett, N. V. Y.; Chiang, K.; Patel, J.; Burke, N.; Sage, V. Kinetic modelling of temperature-programmed reduction of cobalt oxide by hydrogen. Appl. Catal. A Gen. 2017, 537, 1–11.

    Article  CAS  Google Scholar 

  36. Meng, J. S.; Niu, C. J.; Xu, L. H.; Li, J. T.; Liu, X.; Wang, X. P.; Wu, Y. Z.; Xu, X. M.; Chen, W. Y.; Li, Q. et al. General oriented formation of carbon nanotubes from metal-organic frameworks. J. Am. Chem. Soc. 2017, 139, 8212–8221.

    Article  CAS  Google Scholar 

  37. Ouyang, T.; Ye, Y. Q.; Wu, C. Y.; **ao, K.; Liu, Z. Q. Heterostructures composed of N-doped carbon nanotubes encapsulating cobalt and β-Mo2C nanoparticles as bifunctional electrodes for water splitting. Angew. Chem., Int. Ed. 2019, 58, 4923–1928.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51871209 and 51902311), and the Postdoctoral Science Foundation of China (No. 2019M652223).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wanbing Gong or Huijun Zhao.

Electronic supplementary material

12274_2021_3298_MOESM1_ESM.pdf

Converting Co2+-impregnated g-C3N4 into N-doped CNTs-confined Co nanoparticles for efficient hydrogenation rearrangement reactions of furanic aldehydes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Al-Mamun, M., Gong, W. et al. Converting Co2+-impregnated g-C3N4 into N-doped CNTs-confined Co nanoparticles for efficient hydrogenation rearrangement reactions of furanic aldehydes. Nano Res. 14, 2846–2852 (2021). https://doi.org/10.1007/s12274-021-3298-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3298-y

Keywords

Navigation