Log in

Carrier mobility tuning of MoS2 by strain engineering in CVD growth process

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Strain engineering is proposed to be an effective technology to tune the properties of two-dimensional (2D) transition metal dichalcogenides (TMDCs). Conventional strain engineering techniques (e.g., mechanical bending, heating) cannot conserve strain due to their dependence on external action, which thereby limits the application in electronics. In addition, the theoretically predicted strain-induced tuning of electrical performance of TMDCs has not been experimentally proved yet. Here, a facile but effective approach is proposed to retain and tune the biaxial tensile strain in monolayer MoS2 by adjusting the process of the chemical vapor deposition (CVD). To prove the feasibility of this method, the strain formation model of CVD grown MoS2 is proposed which is supported by the calculated strain dependence of band gap via the density functional theory (DFT). Next, the electrical properties tuning of strained monolayer MoS2 is demonstrated in experiment, where the carrier mobility of MoS2 was increased by two orders (∼ 0.15 to ∼ 23 cm2·V−1·s−1). The proposed pathway of strain preservation and regulation will open up the optics application of strain engineering and the fabrication of high performance electronic devices in 2D materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150.

    CAS  Google Scholar 

  2. Yin, Z. Y.; Li, H.; Li, H.; Jiang, L.; Shi, Y. M.; Sun, Y. H..; Lu, G.; Zhang, Q.; Chen, X. D.; Zhang, H. Single-layer MoS2 phototransistors. ACS Nano 2012, 6, 74–80.

    CAS  Google Scholar 

  3. Su, S. Q.; Zhou, Q. W.; Zeng, Z. Q.; Hu, D.; Wang, X.; **, M. L.; Gao, X. S.; Nötzel, R.; Zhou, G. F.; Zhang, Z. et al. Ultrathin alumina mask-assisted nanopore patterning on monolayer MoS2 for highly catalytic efficiency in hydrogen evolution reaction. Acs Appl. Mater. Interfaces 2018, 10, 8026–8035.

    CAS  Google Scholar 

  4. Zhu, C. F.; Zeng, Z. Y.; Li, H.; Li, F.; Fan, C. H.; Zhang, H. Single-layer MoS2-based nanoprobes for homogeneous detection of biomolecules. J. Am. Chem. Soc. 2013, 135, 5998–6001.

    CAS  Google Scholar 

  5. Lu, P.; Wu, X. J.; Guo, W. L.; Zeng, X. C. Strain-dependent electronic and magnetic properties of MoS2 monolayer, bilayer, nanoribbons and nanotubes. Phys. Chem. Chem. Phys. 2012, 14, 13035–13040.

    CAS  Google Scholar 

  6. Pan, H.; Zhang, Y. W. Tuning the electronic and magnetic properties of MoS2 nanoribbons by strain engineering. J. Phys. Chem. C 2012, 116, 11752–11757.

    CAS  Google Scholar 

  7. Mouri, S.; Miyauchi, Y.; Matsuda, K. Tunable photoluminescence of monolayer MoS2 via chemical do**. Nano Lett. 2013, 13, 5944–5948.

    CAS  Google Scholar 

  8. Gong, Y. J.; Liu, Z.; Lupini, A. R.; Shi, G.; Lin, J. H.; Najmaei, S.; Lin, Z.; Elía, A. L.; Berkdemir, A.; You, G. et al. Band gap engineering and layer-by-layer map** of selenium-doped molybdenum disulfide. Nano Lett. 2014, 14, 442–449.

    CAS  Google Scholar 

  9. Zhang, K. H.; Feng, S. M.; Wang, J. J.; Azcatl, A.; Lu, N.; Addou, R.; Wang, N.; Zhou, C. J.; Lerach, J.; Bojan, V. et al. Manganese do** of monolayer MoS2: The substrate is critical. Nano Lett. 2015, 15, 6586–6591.

    CAS  Google Scholar 

  10. Komsa, H. P.; Kurasch, S.; Lehtinen, O.; Kaiser, U.; Krasheninnikov, A. V. From point to extended defects in two-dimensional MoS2: Evolution of atomic structure under electron irradiation. Phys. Rev. B 2013, 88, 035301.

    Google Scholar 

  11. Miró, P.; Ghorbani-Asl, M.; Heine, T. Spontaneous ripple formation in MoS2 monolayers: Electronic structure and transport effects. Adv. Mater. 2013, 25, 5473–5475.

    Google Scholar 

  12. Luo, S. W.; Hao, G. L.; Fan, Y. P.; Kou, L. Z.; He, C. Y.; Qi, X.; Tang, C.; Li, J.; Huang, K.; Zhong, J. X. Formation of ripples in atomically thin MoS2 and local strain engineering of electrostatic properties. Nanotechnology 2015, 26, 105705.

    Google Scholar 

  13. Tongay, S.; Zhou, J.; Ataca, C.; Lo, K.; Matthews, T. S.; Li, J. B.; Grossman, J. C.; Wu, J. Q. Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2. Nano Lett. 2012, 12, 5576–5580.

    CAS  Google Scholar 

  14. Johari, P.; Shenoy, V. B. Tuning the electronic properties of semiconducting transition metal dichalcogenides by applying mechanical strains. Acs Nano 2012, 6, 5449–5456.

    CAS  Google Scholar 

  15. Amin, B.; Kaloni, T. P.; Schwingenschlogl, U. Strain engineering of WS2, WSe2, and WTe2. RSC Adv. 2014, 4, 34561–34565.

    CAS  Google Scholar 

  16. Peelaers, H.; Van De Walle, C. G. Effects of strain on band structure and effective masses in MoS2. Phys. Rev. B 2012, 86, 241401(R).

    Google Scholar 

  17. Shi, H. L.; Pan, H.; Zhang, Y. W.; Yakobson, B. I. Quasiparticle band structures and optical properties of strained monolayer MoS2 and WS2. Phys. Rev. B 2013, 87, 155304.

    Google Scholar 

  18. Liu, Z.; Amani, M.; Najmaei, S.; Xu, Q.; Zou, X. L.; Zhou, W.; Yu, T.; Qiu, C. Y.; Birdwell, A. G.; Crowne, F. J. et al. Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition. Nat. Commun. 2014, 5, 5246.

    Google Scholar 

  19. Conley, H. J.; Wang, B.; Ziegler, J. I.; Haglund, R. F., Jr.; Pantelides, S. T.; Bolotin, K. I. Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett. 2013, 13, 3626–3630.

    CAS  Google Scholar 

  20. He, K. L.; Poole, C.; Mak, K. F.; Shan, J. Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2. Nano Lett. 2013, 13, 2931–2936.

    CAS  Google Scholar 

  21. Amani, M.; Chin, M. L.; Mazzoni, A. L.; Burke, R. A.; Najmaei, S.; Ajayan, P. M.; Lou, J.; Dubey, M. Growth-substrate induced performance degradation in chemically synthesized monolayer MoS2 field effect transistors. Appl. Phys. Lett. 2014, 104, 203506.

    Google Scholar 

  22. Plechinger, G.; Castellanos-Gomez, A.; Buscema, M.; van der Zant, H. S. J.; Steele, G. A.; Kuc, A.; Heine, T.; Schüller, C.; Korn, T. Control of biaxial strain in single-layer molybdenite using local thermal expansion of the substrate. 2D Mater. 2015, 2, 015006.

    Google Scholar 

  23. Lloyd, D.; Liu, X. H.; Christopher, J. W.; Cantley, L.; Wadehra, A.; Kim, B. L.; Goldberg, B. B.; Swan, A. K.; Bunch, J. Scott. Band gap engineering with ultralarge biaxial strains in suspended monolayer MoS2. Nano Lett. 2016, 16, 5836–5841.

    CAS  Google Scholar 

  24. Zhu, C. R.; Wang, G.; Liu, B. L.; Marie, X.; Qiao, X. F.; Zhang, X.; Wu, X. X.; Fan, H.; Tan, P. H.; Amand, T. et al. Strain tuning of optical emission energy and polarization in monolayer and bilayer MoS2. Phys. Rev. B 2013, 88, 121301(R).

    Google Scholar 

  25. Pak, S.; Lee, J.; Lee, Y. W.; Jang, A. R.; Ahn, S.; Ma, K. Y.; Cho, Y.; Hong, J.; Lee, S.; Jeong, H. Y. et al. Strain-mediated interlayer coupling effects on the excitonic behaviors in an epitaxially grown MoS2/WS2 van der Waals Heterobilayer. Nano Lett. 2017, 17, 5634–5640.

    CAS  Google Scholar 

  26. Ahn, G. H.; Amani, M.; Rasool, H.; Lien, D. H.; Mastandrea, J. P.; Ager III, J. W.; Dubey, M.; Chrzan, D. C.; Minor, A. M.; Javey, A. Strain-engineered growth of two-dimensional materials. Nat. Commun. 2017, 8, 608.

    Google Scholar 

  27. Wang, Z. Q.; Shen, Y. H.; Ito, Y.; Zhang, Y. Z.; Du, J.; Fujita, T.; Hirata, A.; Tang, Z.; Chen, M. W. Synthesizing 1T-1H two-phase Mo1−xWxS2 monolayers by chemical vapor deposition. Acs Nano 2018, 12, 1571–1579

    CAS  Google Scholar 

  28. Zhang, B. Y.; Liu, T.; Meng, B.; Li, X. H.; Liang, G. Z.; Hu, X. N.; Wang, Q. J. Broadband high photoresponse from pure monolayer graphene photodetector. Nat. Commun. 2013, 4, 1811.

    Google Scholar 

  29. Yang, S. Y.; Shim, G. W.; Seo, S. B.; Choi, S. Y. Effective shape-controlled growth of monolayer MoS2 flakes by powder-based chemical vapor deposition. Nano Res. 2017, 10, 255–262.

    CAS  Google Scholar 

  30. Zheng, J. Y.; Yan, X. X.; Lu, Z. X.; Qiu, H. L.; Xu, G. C.; Zhou, X.; Wang, P.; Pan, X. Q.; Liu, K. H.; Jiao, L. Y. High-mobility multilayered MoS2 flakes with low contact resistance grown by chemical vapor deposition. Adv. Mater. 2017, 29, 1604540.

    Google Scholar 

  31. Splendiani, A.; Sun, L.; Zhang, Y. B.; Li, T. S.; Kim, J.; Chim, C. Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271–1275.

    CAS  Google Scholar 

  32. Jeon, J.; Jang, S. K.; Jeon, S. M.; Yoo, G.; Jang, Y. H.; Park, J. H.; Lee, S. Layer-controlled CVD growth of large-area two-dimensional MoS2 films. Nanoscale 2015, 7, 1688–1695.

    CAS  Google Scholar 

  33. Najmaei, S.; Liu, Z.; Zhou, W.; Zou, X. L.; Shi, G.; Lei, S. D.; Yakobson, B. I.; Idrobo, J. C.; Ajayan, P. M.; Lou, J. Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat. Mater. 2013, 12, 754–759.

    CAS  Google Scholar 

  34. Lee, C.; Yan, H. G.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. Anomalous lattice vibrations of single- and few-layer MoS2. Acs Nano 2010, 4, 2695–2700.

    CAS  Google Scholar 

  35. Rong, Y. M.; He, K.; Pacios, M.; Robertson, A. W.; Bhaskaran, H.; Warner, J. H. Controlled preferential oxidation of grain boundaries in monolayer tungsten disulfide for direct optical imaging. Acs Nano 2015, 9, 3695–3703.

    CAS  Google Scholar 

  36. Hao, S.; Yang, B. C.; Gao, Y. L. Quenching induced fracture behaviors of CVD-grown polycrystalline molybdenum disulfide films. RSC Adv. 2016, 6, 59816–59822.

    CAS  Google Scholar 

  37. Gao, J.; Li, B. C.; Tan, J. W.; Chow, P.; Lu, T. M.; Koratkar, N. Aging of transition metal dichalcogenide monolayers. Acs Nano 2016, 10, 2628–2635.

    CAS  Google Scholar 

  38. Mennel, L.; Furchi, M. M.; Wachter, S.; Paur, M.; Polyushkin, D. K.; Mueller, T. Optical imaging of strain in two-dimensional crystals. Nat. Commun. 2018, 9, 516.

    Google Scholar 

  39. Liang, J.; Zhang, J.; Li, Z. Z.; Hong, H.; Wang, J. H.; Zhang, Z. H.; Zhou, X.; Qiao, R. X.; Xu, J. Y.; Gao, P. et al. Monitoring local strain vector in atomic-layered MoSe2 by second-harmonic generation. Nano Lett. 2017, 17, 7539–7543.

    CAS  Google Scholar 

  40. Sinha, A. K.; Levinstein, H. J.; Smith, T. E. Thermal stresses and cracking resistance of dielectric films (SiN, Si3N4, and SiO2) on Si substrates. J. Appl. Phys. 1978, 49, 2423–2426.

    CAS  Google Scholar 

  41. El-Mahalawy, S. H.; Evans, B. L. The thermal expansion of 2H-MoS2, 2H-MoSe2 and 2H-WSe2 between 20 and 800°C. J. Appl. Crystallogr. 1976, 9, 403–406.

    Google Scholar 

  42. Gan, C. K.; Liu, Y. Y. F. Direct calculation of the linear thermal expansion coefficients of MoS2 via symmetry-preserving deformations. Phys. Rev. B 2016, 94, 134303.

    Google Scholar 

  43. Nix, W. D. Mechanical properties of thin films. Metall. Trans. A 1989, 20, 2217.

    Google Scholar 

  44. Scalise, E.; Houssa, M.; Pourtois, G.; Afanas’ev, V.; Stesmans, A. Strain-induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS2. Nano Res. 2012, 5, 43–48.

    CAS  Google Scholar 

  45. Jiang, T.; Huang, R.; Zhu, Y. Interfacial sliding and buckling of monolayer graphene on a stretchable substrate. Adv. Funct. Mater. 2014, 24, 396–402.

    CAS  Google Scholar 

  46. Ni, Z. H.; Yu, T.; Lu, Y. H.; Wang, Y. Y.; Feng, Y. P.; Shen, Z. X. Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening. ACS Nano 2008, 2, 2301–2305.

    CAS  Google Scholar 

  47. Zhang, C. D.; Li, M. Y.; Tersoff, J.; Han, Y. M.; Su, Y. S.; Li, L. J.; Muller, D. A.; Shih, C. K. Strain distributions and their influence on electronic structures of WSe2-MoS2 laterally strained heterojunctions. Nat. Nanotechnol. 2018, 13, 152–158.

    CAS  Google Scholar 

  48. Rice, C.; Young, R. J.; Zan, R.; Bangert, U.; Wolverson, D.; Georgiou, T.; Jalil, R.; Novoselov, K. S. Raman-scattering measurements and first-principles calculations of strain-induced phonon shifts in monolayer MoS2. Phys. Rev. B 2013, 87, 081307(R).

    Google Scholar 

  49. Mao, N. N.; Chen, Y. F.; Liu, D. M.; Zhang, J.; **e, L. M. Solvatochromic Effect on the Photoluminescence of MoS2 Monolayers. Small 2013, 9, 1312–1315.

    CAS  Google Scholar 

  50. Chakraborty, B.; Bera, A.; Muthu, D. V. S.; Bhowmick, S.; Waghmare, U. V.; Sood, A. K. Symmetry-dependent phonon renormalization in monolayer MoS2 transistor. Phys. Rev. B 2012, 85, 161403(R).

    Google Scholar 

  51. Sun, L. F.; Leong, W. S.; Yang, S. Z.; Chisholm, M. F.; Liang, S. J.; Ang, L. K.; Tang, Y. J.; Mao, Y. W.; Kong, J.; Yang, H. Y. Concurrent synthesis of high-performance monolayer transition metal disulfides. Adv. Funct. Mater. 2017, 27, 1605896.

    Google Scholar 

  52. Han, G. H.; Kybert, N. J.; Naylor, C. H.; Lee, B. S.; **, J. L.; Park, J. H.; Kang, J.; Lee, S. Y.; Lee, Y. H.; Agarwal, R. et al. Seeded growth of highly crystalline molybdenum disulphide monolayers at controlled locations. Nat. Commun. 2015, 6, 6128.

    CAS  Google Scholar 

  53. Yang, P. F.; Zou, X. L.; Zhang, Z. P.; Hong, M.; Shi, J. P.; Chen, S. L.; Shu, J. P.; Zhao, L. Y.; Jiang, S. L.; Zhou, X. B. et al. Batch production of 6-inch uniform monolayer molybdenum disulfide catalyzed by sodium in glass. Nat. Commun. 2018, 9, 979.

    Google Scholar 

  54. Ju, M.; Liang, X. Y.; Liu, J. X.; Zhou, L.; Liu, Z.; Mendes, R. G.; Rümmeli, M. H.; Fu, L. Universal substrate-trap** strategy to grow strictly monolayer transition metal dichalcogenides crystals. Chem. Mater. 2017, 29, 6095–6103.

    CAS  Google Scholar 

  55. Chan, V.; Rim, K.; Ieong, M.; Yang, S.; Malik, R.; Teh, Y. W.; Yang, M.; Qi, Q. Strain for CMOS performance improvement. In Proceedings of IEEE 2005 Custom Integrated Circuits Conference, San Jose, USA, 2005, pp 667–674.

  56. Yun, W. S.; Han, S. W.; Hong, S. C.; Kim, I. G.; Lee, J. D. Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M = Mo, W; X = S, Se, Te). Phys. Rev. B 2012, 85, 033305.

    Google Scholar 

  57. Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561.

    CAS  Google Scholar 

  58. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    CAS  Google Scholar 

  59. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Science Foundation of China (Nos. 61922005, U1930105, 21673054 and 11874130), Bei**g Natural Science Foundation (No. JQ20027), the Bei**g Excellent Talent Program, the Equipment Pre-research Project of China Electronics Technology Group Corporation (CETC) (No. 6141B08110104), and the General Program of Science and Technology Development Project of Bei**g Municipal Education Commission (No. KM202010005005). All authors thank Prof. Danmin Liu, Prof. Hui Yan, Yang Ma and Peng Wang for disscussion.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to **aoqing Chen or Yongzhe Zhang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Deng, W., Chen, X. et al. Carrier mobility tuning of MoS2 by strain engineering in CVD growth process. Nano Res. 14, 2314–2320 (2021). https://doi.org/10.1007/s12274-020-3228-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3228-4

Keywords

Navigation