Log in

From intrinsic dielectric loss to geometry patterns: Dual-principles strategy for ultrabroad band microwave absorption

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

As electromagnetic absorbers with wide absorption bandwidth are highly pursued in the cutting-edge electronic and telecommunication industries, the traditional dielectric or magnetic bulky absorbers remain concerns of extending the effective absorption bandwidth. In this work, a dual-principle strategy has been proposed to make a better understanding of the impact of utilizing conductive absorption fillers coupled with implementing artificial structures design on the absorption performance. In the comparison based on the microscopic studies, the carbon nanotubes (CNTs)-based absorbers are confined to narrow operating bandwidth and relatively fixed response frequency range, which can not fulfill the ever-growing demands in the application. With subsequent macroscopic structure design based on the CNTs-based dielectric fillers, the artificial patterns show much more broadened absorption bandwidth, covering the majority of C-band, the whole X-band, and Ku-band, due to the tailored electromagnetic parameters and more reflections and scatterings. The results suggest that the combination of develo** microscopic powder/bulky absorbers and macroscopic configuration design will fundamentally extend the effective operating bandwidth of microwave.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zeng, Z. H.; Wu, T. T.; Han, D. X.; Ren, Q.; Siqueira, G.; Nyström, G. Ultralight, flexible, and biomimetic nanocellulose/silver nanowire aerogels for electromagnetic interference shielding. ACS Nano 2020, 14, 2927–2938.

    Article  CAS  Google Scholar 

  2. Chang, Y. K.; Mu, C. P.; Yang, B. C.; Nie, A. M.; Wang, B. C.; **ang, J. Y.; Yang, Y.; Wen, F. S.; Liu, Z. Y. Microwave absorbing properties of two dimensional materials GeP5 enhanced after annealing treatment. Appl. Phys. Lett. 2019, 114, 013103.

    Article  Google Scholar 

  3. Cao, M. S.; Wang, X. X.; Zhang, M.; Shu, J. C.; Cao, W. Q.; Yang, H. J.; Fang, X. Y.; Yuan, J. Electromagnetic response and energy conversion for functions and devices in low-dimensional materials. Adv. Funct. Mater. 2019, 29, 1807398.

    Article  Google Scholar 

  4. Cheng, Y.; Yeow Seow, J. Z.; Zhao, H. Q.; Xu, Z. C. J.; Ji, G. B. A flexible and lightweight biomass-reinforced microwave absorber. Nano-Micro Lett. 2020, 12, 125.

    Article  CAS  Google Scholar 

  5. Lou, Z. C.; Li, R.; Wang, P.; Zhang, Y.; Chen, B.; Huang, C. X.; Wang, C. C.; Han, H.; Li, Y. J. Phenolic foam-derived magnetic carbon foams (MCFs) with tunable electromagnetic wave absorption behavior. Chem. Eng. J. 2020, 391, 123571.

    Article  CAS  Google Scholar 

  6. Cao, M. S.; Wang, X. X.; Cao, W. Q.; Fang, X. Y.; Wen, B.; Yuan, J. Thermally driven transport and relaxation switching self-powered electromagnetic energy conversion. Small 2018, 14, 1800987.

    Article  Google Scholar 

  7. Huang, L. X.; Duan, Y. P.; Dai, X. H.; Zeng, Y. S.; Ma, G. J.; Liu, Y.; Gao, S. H.; Zhang, W. P. Bioinspired metamaterials: Multibands electromagnetic wave adaptability and hydrophobic characteristics. Small 2019, 15, 1902730.

    Article  Google Scholar 

  8. Sun, H.; Che, R. C.; You, X.; Jiang, Y. S.; Yang, Z. B.; Deng, J.; Qiu, L. B.; Peng, H. S. Cross-stacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensities. Adv. Mater. 2014, 26, 8120–8125.

    Article  CAS  Google Scholar 

  9. Liang, X. H.; Man, Z. M.; Quan, B.; Zheng, J.; Gu, W. H.; Zhang, Z.; Ji, G. B. Environment-stable CoxNiy encapsulation in stacked porous carbon nanosheets for enhanced microwave absorption. Nano-Micro Lett. 2020, 12, 102.

    Article  CAS  Google Scholar 

  10. Quan, B.; Shi, W. H.; Ong, S. J. H.; Lu, X. C.; Wang, P. L.; Ji, G. B.; Guo, Y. F.; Zheng, L. R.; Xu, Z. J. Defect engineering in two common types of dielectric materials for electromagnetic absorption applications. Adv. Funct. Mater. 2019, 29, 1901236.

    Article  Google Scholar 

  11. Li, X.; Wang, L.; You, W. B.; **ng, L. S.; Yu, X. F.; Li, Y. S.; Che, R. C. Morphology-controlled synthesis and excellent microwave absorption performance of ZnCo2O4 nanostructures via a self-assembly process of flake units. Nanoscale 2019, 11, 2694–2702.

    Article  CAS  Google Scholar 

  12. Li, Y.; Liu, X. F.; Nie, X. Y.; Yang, W. W.; Wang, Y. D.; Yu, R. H.; Shui, J. L. Multifunctional organic-inorganic hybrid aerogel for self-cleaning, heat-insulating, and highly efficient microwave absorbing material. Adv. Funct. Mater. 2019, 29, 1807624.

    Article  Google Scholar 

  13. Yin, X.; Chen, L.; Li, X. Ultra-broadband super light absorber based on multi-sized tapered hyperbolic metamaterial waveguide arrays. J. Lightwave Technol. 2015, 33, 3704–3710.

    Article  CAS  Google Scholar 

  14. Agarwal, S.; Prajapati, Y. K.; Singh, V.; Saini, J. P. Polarization independent broadband metamaterial absorber based on tapered helical structure. Opt. Commun. 2015, 356, 565–570.

    Article  CAS  Google Scholar 

  15. Yin, J. Y.; Wan, X.; Ren, J.; Cui, T. J. A circular polarizer with beamforming feature based on frequency selective surfaces. Sci. Rep. 2017, 7, 41505.

    Article  CAS  Google Scholar 

  16. Zhang, N.; Zhou, P. H.; Wang, S. Y.; Weng, X. L.; **e, J. L.; Deng, L. J. Broadband absorption in mid-infrared metamaterial absorbers with multiple dielectric layers. Opt. Commun. 2015, 338, 388–392.

    Article  CAS  Google Scholar 

  17. Ren, J.; Yin, J. Y. 3D-printed low-cost dielectric-resonator-based ultra-broadband microwave absorber using carbon-loaded acrylonitrile butadiene styrene polymer. Materials 2018, 11, 1249.

    Article  Google Scholar 

  18. Kronberger, R.; Soboll, P. New 3D printed microwave metamaterial absorbers with conductive printing materials. In Proceedings of the 46th European Microwave Conference, London, UK, 2016, pp 596–599.

  19. Hu, Q. M.; Yang, R. L.; Mo, Z. C.; Lu, D. W.; Yang, L. L.; He, Z. F.; Zhu, H.; Tang, Z. K.; Gui, X. C. Nitrogen-doped and Fe-filled CNTs/NiCo2O4 porous sponge with tunable microwave absorption performance. Carbon 2019, 153, 737–744.

    Article  CAS  Google Scholar 

  20. Han, H.; Lou, Z. C.; Wang, P.; Wang, Q. Y.; Li, R.; Zhang, Y.; Li, Y. J. Synthesis of ultralight and porous magnetic g-C3N4/g-carbon foams with excellent electromagnetic wave (EMW) absorption performance and their application as a reinforcing agent for 3D printing EMW absorbers. Ind. Eng. Chem. Res. 2020, 59, 7633–7645.

    Article  CAS  Google Scholar 

  21. Quan, B.; Liang, X. H.; Ji, G. B.; Lv, J.; Dai, S. S.; Xu, G. Y.; Du, Y. W. Laminated graphene oxide-supported high-efficiency microwave absorber fabricated by an in situ growth approach. Carbon 2018, 129, 310–320.

    Article  CAS  Google Scholar 

  22. Liu, Q. H.; Cao, Q.; Bi, H.; Liang, C. Y.; Yuan, K. P.; She, W.; Yang, Y. J.; Che, R. C. CoNi@SiO2@TiO2 and CoNi@Air@TiO2 Microspheres with strong wideband microwave absorption. Adv. Mater. 2016, 28, 486–490.

    Article  CAS  Google Scholar 

  23. Liao, X. J.; Ye, W.; Chen, L. L.; Jiang, S. H.; Wang, G.; Zhang, L.; Hou, H. Q. Flexible hdC-G reinforced polyimide composites with high dielectric permittivity. Compos. Part A 2017, 101, 50–58.

    Article  CAS  Google Scholar 

  24. Hu, P. Y.; Lyu, J.; Fu, C.; Gong, W. B.; Liao, J. H.; Lu, W. B.; Chen, Y. P.; Zhang, X. T. Multifunctional aramid nanofiber/carbon nanotube hybrid aerogel films. ACS Nano 2020, 14, 688–697.

    Article  CAS  Google Scholar 

  25. Wen, B.; Cao, M. S.; Hou, Z. L.; Song, W. L.; Zhang, L.; Lu, M. M.; **, H. B.; Fang, X. Y.; Wang, W. Z.; Yuan, J. Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites. Carbon 2013, 65, 124–139.

    Article  CAS  Google Scholar 

  26. Cao, M. S.; Song, W. L.; Hou, Z. L.; Wen, B.; Yuan, J. The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon 2010, 48, 788–796.

    Article  CAS  Google Scholar 

  27. Aydin, K.; Ferry, V. E.; Briggs, R. M.; Atwater, H. A. Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. Nat. Commun. 2011, 2, 517.

    Article  Google Scholar 

  28. Liu, X. L.; Starr, T.; Starr, A. F.; Padilla, W. J. Infrared spatial and frequency selective metamaterial with near-unity absorbance. Phys. Rev. Lett. 2010, 104, 207403.

    Article  Google Scholar 

  29. Huang, Y. X.; Song, W. L.; Wang, C. X.; Xu, Y. N.; Wei, W. Y.; Chen, M. J.; Tang, L. Q.; Fang, D. N. Multi-scale design of electromagnetic composite metamaterials for broadband microwave absorption. Compos. Sci. Technol. 2018, 162, 206–214.

    Article  CAS  Google Scholar 

  30. Li, A. B.; Zhao, X. G.; Duan, G. W.; Anderson, S.; Zhang, X. Diatom Frustule-inspired metamaterial absorbers: The effect of hierarchical pattern arrays. Adv. Funct. Mater. 2019, 29, 1809029.

    Article  Google Scholar 

  31. Layani, M.; Wang, X. F.; Magdassi, S. Novel materials for 3D printing by photopolymerization. Adv. Mater. 2018, 30, 1706344.

    Article  Google Scholar 

  32. Hirt, L.; Reiser, A.; Spolenak, R.; Zambelli, T. Additive manufacturing of metal structures at the micrometer scale. Adv. Mater. 2017, 29, 1604211.

    Article  Google Scholar 

  33. Hu, G. H.; Kang, J.; Ng, L. W. T.; Zhu, X. X.; Howe, R. C. T.; Jones, C. G.; Hersam, M. C.; Hasan, T. Functional inks and printing of two-dimensional materials. Chem. Soc. Rev. 2018, 47, 3265–3300.

    Article  CAS  Google Scholar 

  34. Si, Y.; Wang, X. Q.; Dou, L. Y.; Yu, J. Y.; Ding, B. Ultralight and fire-resistant ceramic nanofibrous aerogels with temperature-invariant superelasticity. Sci. Adv. 2018, 4, eaas8925.

    Article  Google Scholar 

Download references

Acknowledgements

Financial supports from the National Natural Science Foundation of China (No. 51971111), the Startup Foundation for Introducing Talent of NUIST, and the Jiangsu Provincial Key Laboratory of Bionic Functional Materials were gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to **aogu Huang, Zongjun Tian or Guangbin Ji.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quan, B., Gu, W., Sheng, J. et al. From intrinsic dielectric loss to geometry patterns: Dual-principles strategy for ultrabroad band microwave absorption. Nano Res. 14, 1495–1501 (2021). https://doi.org/10.1007/s12274-020-3208-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3208-8

Keywords

Navigation