Log in

Porous γ-Fe2O3 nanoparticle decorated with atomically dispersed platinum: Study on atomic site structural change and gas sensor activity evolution

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Decorating semi-conducting metal oxide with noble metal has been recognized as a viable approach to improve the sensitivity of gas sensor. However, conventional method which relys on noble metal nanoparticles is confronted with drawback of significantly increased cost. To maximize the atom efficiency and reduce the cost for practical industrial application, designing sensor material with noble metal isolated single atom sites (ISAS) do** is a desired option. Here, we report an atomically dispersed platinum on one-dimensional arranged porous γ-Fe2O3 nanoparticle composites as highly efficient ethanol gas sensor. The optimized sample (Pt1-Fe2O3-ox) exhibited a high response (Ra/Rg = 102.4) and good selectivity to ethanol gas. It is demonstrated only the Pt single atom sites with high valance can effectively promote the adsorption capacity to ethanol and consequently enhance the sensitivity of sensing process by changing the electrical structure of Fe2O3 support. This work indicates the single atom sites could play a vital role in improving the performance of conventional metal oxides gas sensors and pave way for the exploration of ISAS-enhanced gas sensor for other volatile organic compounds (VOCs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ding, K. L.; Gulec, A.; Johnson, A. M.; Schweitzer, N. M.; Stucky, G. D.; Marks, L. D.; Stair, P. C. Identification of active sites in CO oxidation and water-gas shift over supported Pt catalysts. Science 2015, 350, 189–192.

    CAS  Google Scholar 

  2. Zhao, S. Z.; Wen, Y. F.; Liu, X. J.; Pen, X. Y.; Lü, F.; Gao, F. Y.; **e, X. Z.; Du, C. C.; Yi, H. H.; Kang, D. J. et al. Formation of active oxygen species on single-atom Pt catalyst and promoted catalytic oxidation of toluene. Nano Res. 2020, 13, 1544–1551.

    CAS  Google Scholar 

  3. Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641.

    CAS  Google Scholar 

  4. Zhang, J.; Wu, X.; Cheong, W. C.; Chen, W. X.; Lin, R.; Li, J.; Zheng, L. R.; Yan, W. S.; Gu, L.; Chen, C. et al. Cation vacancy stabilization of single-atomic-site Pt1/Ni(OH)x catalyst for diboration of alkynes and alkenes. Nat. Commun. 2018, 9, 1002.

    Google Scholar 

  5. Wan, J. W.; Chen, W. X.; Jia, C. Y.; Zheng, L. R.; Dong, J. C.; Zheng, X. S.; Wang, Y.; Yan, W. S.; Chen, C.; Peng, Q. et al. Defect effects on TiO2 nanosheets: Stabilizing single atomic site Au and promoting catalytic properties. Adv. Mater. 2018, 30, 1705369.

    Google Scholar 

  6. Liu, J. C.; Wang, Y. G.; Li, J. Toward rational design of oxide-supported single-atom catalysts: Atomic dispersion of gold on ceria. J. Am. Chem. Soc. 2017, 139, 6190–6199.

    CAS  Google Scholar 

  7. Yang, M.; Li, S.; Wang, Y.; Herron, J. A.; Xu, Y.; Allard, L. F.; Lee, S.; Huang, J.; Mavrikakis, M.; Flytzani-Stephanopoulos, M. Catalytically active Au-O(OH)x-species stabilized by alkali ions on zeolites and mesoporous oxides. Science 2014, 346, 1498–1501.

    CAS  Google Scholar 

  8. Yan, H.; Cheng, H.; Yi, H.; Lin, Y.; Yao, T.; Wang, C. L.; Li, J. J.; Wei, S. Q.; Lu, J. L. Single-atom Pd1/graphene catalyst achieved by atomic layer deposition: Remarkable performance in selective hydrogenation of 1,3-butadiene. J. Am. Chem. Soc. 2015, 137, 10484–10487.

    CAS  Google Scholar 

  9. Vilé, G.; Albani, D.; Nachtegaal, M.; Chen, Z. P.; Dontsova, D.; Antonietti, M.; López, N.; Pérez-Ramírez, J. A stable single-site palladium catalyst for hydrogenations. Angew. Chem., Int. Ed. 2015, 54, 11265–11269.

    Google Scholar 

  10. Fu, N. H.; Liang, X.; Li, Z.; Chen, W. X.; Wang, Y.; Zheng, L. R.; Zhang, Q. H.; Chen, C.; Wang, D. S.; Peng, Q. et al. Fabricating Pd isolated single atom sites on C3N4/rGO for heterogenization of homogeneous catalysis. Nano Res. 2020, 13, 947–951.

    CAS  Google Scholar 

  11. Wei, S. J.; Li, A.; Liu, J. C.; Li, Z.; Chen, W. X.; Gong, Y.; Zhang, Q. H.; Cheong, W. C.; Wang, Y.; Zheng, L. R. et al. Direct observation of noble metal nanoparticles transforming to thermally stable single atoms. Nat. Nanotechnol. 2018, 13, 856–861.

    CAS  Google Scholar 

  12. Jones, J.; **. Science 2016, 353, 150–154.

    CAS  Google Scholar 

  13. Zhuang, Z. C.; Kang, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysis enables long-life, high-energy lithium-sulfur batteries. Nano Res. 2020, 13, 1856–1866.

    CAS  Google Scholar 

  14. Pan, Y.; Zhang, C.; Lin, Y.; Liu, Z.; Wang, M. M.; Chen, C. Electrocatalyst engineering and structure-activity relationship in hydrogen evolution reaction: From nanostructures to single atoms. Sci. China Mater. 2020, 63, 921–948.

    CAS  Google Scholar 

  15. Lucci, F. R.; Liu, J. L.; Marcinkowski, M. D.; Yang, M.; Allard, L. F.; Flytzani-Stephanopoulos, M.; Sykes, E. C. H. Selective hydrogenation of 1,3-butadiene on platinum-copper alloys at the single-atom limit. Nat. Commun. 2015, 6, 8550.

    Google Scholar 

  16. Li, X. Y.; Rong, H. P.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842–1855.

    CAS  Google Scholar 

  17. Zhang, N. Q.; Ye, C. L.; Yan, H.; Li, L. C.; He, H.; Wang, D. S.; Li, Y. D. Single-atom site catalysts for environmental catalysis. Nano Res. 2020, 13, 3165–3182.

    Google Scholar 

  18. Xu, Q.; Guo, C. X.; Tian, S. B.; Zhang, J.; Chen, W. X.; Cheong, W. C.; Gu, L.; Zheng, L. R.; **ao, J. P.; Liu, Q. et al. Coordination structure dominated performance of single-atomic Pt catalyst for anti-Markovnikov hydroboration of alkenes. Sci. China Mater. 2020, 63, 972–981.

    CAS  Google Scholar 

  19. DeRita, L.; Resasco, J.; Dai, S.; Boubnov, A.; Thang, H. V.; Hoffman, A. S.; Ro, I.; Graham, G. W.; Bare, S. R.; Pacchioni, G. et al. Structural evolution of atomically dispersed Pt catalysts dictates reactivity. Nat. Mater. 2019, 78, 746–751.

    Google Scholar 

  20. Li, T. F.; Liu, J. J.; Song, Y.; Wang, F. Photochemical solid-phase synthesis of platinum single atoms on nitrogen-doped carbon with high loading as bifunctional catalysts for hydrogen evolution and oxygen reduction reactions. ACS Catal. 2018, 8, 8450–8458.

    CAS  Google Scholar 

  21. Parkinson, G. S.; Novotny, Z.; Argentero, G.; Schmid, M.; Pavelec, J.; Kosak, R.; Blaha, P.; Diebold, U. Carbon monoxide-induced adatom sintering in a Pd-Fe3O4 model catalyst. Nat. Mater. 2013, 12, 724–728.

    CAS  Google Scholar 

  22. Wang, B. L.; Luo, H.; Wang, X. W.; Wang, E. Z.; Sun, Y. F.; Tsai, Y. C.; Dong, J. X.; Liu, P.; Li, H. L.; Xu, Y. et al. Direct laser patterning of two-dimensional lateral transition metal disulfide-oxide-disulfide heterostructures for ultrasensitive sensors. Nano Res. 2020, 13, 2035–2043.

    CAS  Google Scholar 

  23. Cao, J.; Wang, Z. Y.; Wang, R.; Liu, S.; Fei, T.; Wang, L. J.; Zhang, T. Synthesis of core-shell α-Fe2O3@NiO nanofibers with hollow structures and their enhanced HCHO sensing properties. J. Mater. Chem. A 2015, 3, 5635–5641.

    CAS  Google Scholar 

  24. Kukkar, D.; Vellingiri, K.; Kaur, R.; Bhardwaj, S. K.; Deep, A.; Kim, K. H. Nanomaterials for sensing of formaldehyde in air: Principles, applications, and performance evaluation. Nano Res. 2019, 12, 225–246.

    CAS  Google Scholar 

  25. Mirzaei, A.; Leonardi, S. G.; Neri, G. Detection of hazardous volatile organic compounds (VOCs) by metal oxide nanostructures-based gas sensors: A review. Ceram. Int. 2016, 42, 15119–15141.

    CAS  Google Scholar 

  26. Mei, L.; Deng, J. W.; Yin, X. M.; Zhang, M.; Li, Q. H.; Zhang, E. D.; Xu, Z.; Chen, L. B.; Wang, T. H. Ultrasensitive ethanol sensor based on 3D aloe-like SnO2. Sens. Actuators B: Chem. 2012, 166–167, 7–11.

    Google Scholar 

  27. Van Hieu, N.; Duc, N. A. P.; Trung, T.; Tuan, M. A.; Chien, N. D. Gas-sensing properties of tin oxide doped with metal oxides and carbon nanotubes: A competitive sensor for ethanol and liquid petroleum gas. Sens. Actuators B: Chem. 2010, 144, 450–456.

    Google Scholar 

  28. Bao, D.; Gao, P.; Wang, L. Q.; Wang, Y.; Chen, Y. J.; Chen, G. R.; Li, G. B.; Chang, C.; Qin, W. ZnO nanorod arrays and hollow spheres through a facile room-temperature solution route and their enhanced ethanol gas-sensing properties. ChemPlusChem 2013, 78, 1266–1272.

    CAS  Google Scholar 

  29. Paraguay D. F.; Miki-Yoshida, M.; Morales, J.; Solis, J.; Estrada L. W. Influence of Al, In, Cu, Fe and Sn dopants on the response of thin film ZnO gas sensor to ethanol vapour. Thin Solid Films 2000, 373, 137–140.

    Google Scholar 

  30. Kılınç, N.; Şennik, E.; Öztürk, Z. Z. Fabrication of TiO2 nanotubes by anodization of Ti thin films for VOC sensing. Thin Solid Films 2011, 520, 953–958.

    Google Scholar 

  31. Chen, J.; Xu, L.; Li, W.; Gou, X. α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications. Adv. Mater. 2005, 17, 582–586.

    CAS  Google Scholar 

  32. Yan, S.; Zan, G. T.; Wu, Q. S. An ultrahigh-sensitivity and selective sensing material for ethanol: α-/γ-Fe2O3 mixed-phase mesoporous nanofibers. Nano Res. 2015, 8, 3673–3686.

    CAS  Google Scholar 

  33. Song, Z. J.; Chen, H. M.; Bao, S. S.; **e, Z. X.; Kuang, Q.; Zheng, L. S. Nanosheet-assembled, hollowed-out hierarchical γ-Fe2O3 microrods for high-performance gas sensing. J. Mater. Chem. A 2020, 8, 3754–3762.

    CAS  Google Scholar 

  34. Yan, W. J.; Zeng, X. M.; Liu, H.; Guo, C. W.; Ling, M.; Zhou, H. P. Highly reliable and selective ethanol sensor based on α-Fe2O3 nanorhombs working in realistic environments. Chin. Phys. B 2019, 28, 487–493.

    Google Scholar 

  35. Tian, H. L.; Fan, H. Q.; Ma, J. W.; Liu, Z. Y.; Ma, L. T.; Lei, S. H.; Fang, J. W.; Long, C. B. Pt-decorated zinc oxide nanorod arrays with graphitic carbon nitride nanosheets for highly efficient dual-functional gas sensing. J. Hazard. Mater. 2018, 341, 102–111.

    Google Scholar 

  36. Zhang, Q.; Qin, X. X.; Duan-Mu, F. P.; Ji, H. M.; Shen, Z. R.; Han, X. P.; Hu, W. B. Isolated platinum atoms stabilized by amorphous tungstenic acid: Metal-support interaction for synergistic oxygen activation. Angew. Chem., Int. Ed. 2018, 57, 9351–9356.

    Google Scholar 

  37. Jia, X. H.; Yu, X. J.; **a, L. X.; Sun, Y. L.; Song, H. J. Synthesis and characterization of Ag/α-Fe2O3 microspheres and their application to highly sensitive and selective detection of ethanol. Appl. Surf. Sci. 2018, 462, 29–37.

    CAS  Google Scholar 

  38. Zhou, M.; Jiang, Y.; Wang, G.; Wu, W. J.; Chen, W. X.; Yu, P.; Lin, Y. Q.; Mao, J. J.; Mao, L. Q. Single-atom Ni-N4 provides a robust cellular NO sensor. Nat. Commun. 2020, 11, 3188.

    CAS  Google Scholar 

  39. Gu, F. B.; Cui, Y. Z.; Han, D. M.; Hong, S.; Flytzani-Stephanopoulos, M.; Wang, Z. H. Atomically dispersed Pt (II) on WO3 for highly selective sensing and catalytic oxidation of triethylamine. Appl. Catal. B: Environ. 2019, 256, 117809.

    CAS  Google Scholar 

  40. Pozdnyakova, O.; Teschner, D.; Wootsch, A.; Kröhnert, J.; Steinhauer, B.; Sauer, H.; Toth, L.; Jentoft, F. C.; Knop-Gericke, A.; Paál, Z. et al. Preferential CO oxidation in hydrogen (PROX) on ceria-supported catalysts, part I: Oxidation state and surface species on Pt/CeO2 under reaction conditions. J. Catal. 2006, 237, 1–16.

    CAS  Google Scholar 

  41. Pereira-Hernández, X. I.; DeLaRiva, A.; Muravev, V.; Kunwar, D.; **ong, H. F.; Sudduth, B.; Engelhard, M.; Kovarik, L.; Hensen, E. J. M.; Wang, Y. et al. Tuning Pt-CeO2 interactions by high-temperature vapor-phase synthesis for improved reducibility of lattice oxygen. Nat. Commun. 2019, 10, 1358.

    Google Scholar 

  42. Gruene, P.; Fielicke, A.; Meijer, G.; Rayner, D. M. The adsorption of CO on group 10 (Ni, Pd, Pt) transition-metal clusters. Phys. Chem. Chem. Phys. 2008, 10, 6144–6149.

    CAS  Google Scholar 

  43. Anjum, G.; Kumar, R.; Mollah, S.; Thakur, P.; Gautam, S.; Chae, K. H. NEXAFS studies of La0.8Bi0.2Fe1−xMnxO3(0.0 ≤ x ≤ 0.4) multiferroic system using X-ray absorption spectroscopy. J. Phys. D: Appl. Phys. 2011, 44, 075403.

    Google Scholar 

  44. Liu, X. H.; Shen, K.; Wang, Y. G.; Wang, Y. Q.; Guo, Y. L.; Guo, Y.; Yong, Z. L.; Lu, G. Z. Preparation and catalytic properties of Pt supported Fe-Cr mixed oxide catalysts in the aqueous-phase reforming of ethylene glycol. Catal. Commun. 2008, 9, 2316–2318.

    CAS  Google Scholar 

  45. Chen, B. B.; Zhu, X. B.; Crocker, M.; Wang, Y.; Shi, C. FeOx-supported gold catalysts for catalytic removal of formaldehyde at room temperature. Appl. Catal. B: Environ. 2014, 154–155, 73–81.

    Google Scholar 

  46. Wei, H. S.; Liu, X. Y.; Wang, A. Q.; Zhang, L. L.; Qiao, B. T.; Yang, X. F.; Huang, Y. Q.; Miao, S.; Liu, J. Y.; Zhang, T. FeOx-supported platinum single-atom and pseudo-single-atom catalysts for chemoselective hydrogenation of functionalized nitroarenes. Nat. Commun. 2014, 5, 5634.

    CAS  Google Scholar 

  47. Korotcenkov, G. Metal oxides for solid-state gas sensors: What determines our choice? Mater. Sci. Eng.: B 2007, 139, 1–23.

    CAS  Google Scholar 

  48. Sun, P.; Cai, Y. X.; Du, S. S.; Xu, X. M.; You, L.; Ma, J.; Liu, F. M.; Liang, X. S.; Sun, Y. F.; Lu, G. Y. Hierarchical α-Fe2O3/SnO2 semiconductor composites: Hydrothermal synthesis and gas sensing properties. Sens. Actuators B: Chem. 2013, 182, 336–343.

    CAS  Google Scholar 

  49. Cheng, Y. L.; Guo, H. X.; Wang, Y. F.; Zhao, Y.; Li, Y.; Liu, L.; Li, H. Y.; Duan, H. J. Low cost fabrication of highly sensitive ethanol sensor based on Pd-doped α-Fe2O3 porous nanotubes. Mater. Res. Bull. 2018, 105, 21–27.

    CAS  Google Scholar 

  50. Li, L. L.; Cheah, Y.; Ko, Y.; Teh, P.; Wee, G.; Wong, C.; Peng, S. J.; Srinivasan, M. The facile synthesis of hierarchical porous flowerlike NiCo2O4 with superior lithium storage properties. J. Mater. Chem. A 2013, 1, 10935–10941.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2018YFA0702003), the National Natural Science Foundation of China (Nos. 21890383 and 21971137), Science and Technology Key Project of Guangdong Province of China (No. 2020B010188002) and Bei**g Municipal Science & Technology Commission (No. Z191100007219003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhi Li or Yadong Li.

Electronic Supplementary Material

12274_2020_3199_MOESM1_ESM.pdf

Porous γ-Fe2O3 nanoparticle decorated with atomically dispersed platinum: Study on atomic site structural change and gas sensor activity evolution

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Li, Z., Zhang, Q. et al. Porous γ-Fe2O3 nanoparticle decorated with atomically dispersed platinum: Study on atomic site structural change and gas sensor activity evolution. Nano Res. 14, 1435–1442 (2021). https://doi.org/10.1007/s12274-020-3199-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3199-5

Keywords

Navigation