Log in

Single metal atom decorated photocatalysts: Progress and challenges

  • Mini Review
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Photocatalysis has attracted intense attention due to its potential to solve the energy resource problem and environmental issues. The single metal atom decorated photocatalysts as a rising star become more and more popular because of the unique advantages of superior catalytic activities and ultrahigh atom utilization efficiency. The key function of single metal atom catalysts in photocatalytic reactions is boosting surface redox reactions by utilizing photogenerated charges, and has been verified by various spectroscopic and microscopic techniques. Nevertheless, the activities of the single metal atoms highly depend on the binding environment in the host photocatalyst that affect the adsorption and activation of reactants as well as the reaction energy barrier. Herein, this mini review summarizes recent progress on single metal atom decorated photocatalysts, and discusses the roles of the single metal atom catalysts in different types of host photocatalysts including organic, carbon-based and inorganic materials. The remaining challenges and future perspectives on the stability and activities of single atom catalysts in photocatalytic processes are elaborated in the end. We believe that this mini review will provide valuable overview on synthetic methods of different single atom photocatalysts for researchers towards future development of highly efficient photocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Guo, Q.; Zhou, C. Y.; Ma, Z. B.; Yang, X. M. Fundamentals of TiO2 photocatalysis: Concepts, mechanisms, and challenges. Adv. Mater. 2019, 31, 1901997.

    CAS  Google Scholar 

  2. Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641.

    CAS  Google Scholar 

  3. Ding, S. P.; Hülsey, M. J.; Pérez-Ramírez, J.; Yan, N. Transforming energy with single-atom catalysts. Joule 2019, 3, 2897–2929.

    CAS  Google Scholar 

  4. Chen, Z. W.; Chen, L. X.; Yang, C. C.; Jiang, Q. Atomic (single, double, and triple atoms) catalysis: Frontiers, opportunities, and challenges. J. Mater. Chem. A 2019, 7, 3492–3515.

    CAS  Google Scholar 

  5. Zhang, Y. Z.; **a, B. Q.; Ran, J. G.; Davey, K.; Qiao, S. Z. Atomic-level reactive sites for semiconductor-based photocatalytic CO2 reduction. Adv. Energy Mater. 2020, 10, 1903879.

    CAS  Google Scholar 

  6. Lai, W. H.; Miao, Z. C.; Wang, Y. X.; Wang, J. Z.; Chou, S. L. Atomic-local environments of single-atom catalysts: Synthesis, electronic structure, and activity. Adv. Energy Mater. 2019, 9, 1900722.

    CAS  Google Scholar 

  7. Sultan, S.; Tiwari, J. N.; Singh, A. N.; Zhumagali, S.; Ha, M. R.; Myung, C. W.; Thangavel, P.; Kim, K. S. Single atoms and clusters based nanomaterials for hydrogen evolution, oxygen evolution reactions, and full water splitting. Adv. Energy Mater. 2019, 9, 1900624.

    Google Scholar 

  8. Liu, L. C.; Corma, A. Metal catalysts for heterogeneous catalysis: From single atoms to nanoclusters and nanoparticles. Chem. Rev. 2018, 118, 4981–5079.

    CAS  Google Scholar 

  9. Wang, T. T.; Zhao, Q. D.; Fu, Y. Y.; Lei, C. J.; Yang, B.; Li, Z. J.; Lei, L. C.; Wu, G.; Hou, Y. Carbon-rich nonprecious metal single atom electrocatalysts for CO2 reduction and hydrogen evolution. Small Methods 2019, 3, 1900210.

    CAS  Google Scholar 

  10. Sun, T. T.; Xu, L. B.; Wang, D. S.; Li, Y. D. Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res. 2019, 12, 2067–2080.

    CAS  Google Scholar 

  11. Zhang, N. Q.; Ye, C. L.; Yan, H.; Li, L. C.; He, H.; Wang, D. S.; Li, Y. D. Single-atom site catalysts for environmental catalysis. Nano Res. 2020, 13, 3165–3182.

    Google Scholar 

  12. Shang, H. S.; Sun, W. M.; Sui, R.; Pei, J. J.; Zheng, L. R.; Dong, J. C.; Jiang, Z. L.; Zhou, D. N.; Zhuang, Z. B.; Chen, W. X. et al. Engineering isolated Mn-N2C2 atomic interface sites for efficient bifunctional oxygen reduction and evolution reaction. Nano Lett. 2020, 20, 5443–5450.

    CAS  Google Scholar 

  13. Sun, T. T.; Li, Y. L.; Cui, T. T.; Xu, L. B.; Wang, Y. G.; Chen, W. X.; Zhang, P. P.; Zheng, T. X.; Fu, X. Z.; Zhang, Z. D. et al. Engineering of coordination environment and multiscale structure in single-site copper catalyst for superior electrocatalytic oxygen reduction. Nano Lett. 2020, 20, 6206–6214.

    CAS  Google Scholar 

  14. Zhang, J.; Zheng, C. Y.; Zhang, M. L.; Qiu, Y. J.; Xu, Q.; Cheong, W. C.; Chen, W. X.; Zheng, L. R.; Gu, L.; Hu, Z. P. et al. Controlling N-do** type in carbon to boost single-atom site Cu catalyzed transfer hydrogenation of quinoline. Nano Res. 2020, 13, 3082–3087.

    Google Scholar 

  15. Zhu, Y. Z.; Sokolowski, J.; Song, X. C.; He, Y. H.; Mei, Y.; Wu, G. Engineering local coordination environments of atomically dispersed and heteroatom-coordinated single metal site electrocatalysts for clean energy-conversion. Adv. Energy Mater. 2020, 10, 1902844.

    CAS  Google Scholar 

  16. Wang, B.; Cai, H. R.; Shen, S. H. Single metal atom photocatalysis. Small Methods 2019, 3, 1800447.

    Google Scholar 

  17. Gao, C.; Low, J.; Long, R.; Kong, T. T.; Zhu, J. F.; **ong, Y. J. Heterogeneous single-atom photocatalysts: Fundamentals and applications. Chem. Rev., in press, DOI: https://doi.org/10.1021/acs.chemrev.9b00840.

  18. Fu, J. W.; Wang, S. D.; Wang, Z. H.; Liu, K.; Li, H. J. W.; Liu, H.; Hu, J. H.; Xu, X. W.; Li, H. M.; Liu, M. Graphitic carbon nitride based single-atom photocatalysts. Front. Phys. 2020, 15, 33201.

    Google Scholar 

  19. Shen, M.; Zhang, L. X.; Shi, J. L. Converting CO2 into fuels by graphitic carbon nitride-based photocatalysts. Nanotechnology 2018, 29, 412001.

    Google Scholar 

  20. Wang, Y. O.; Vogel, A.; Sachs, M.; Sprick, R. S.; Wilbraham, L.; Moniz, S. J. A.; Godin, R.; Zwijnenburg, M. A.; Durrant, J. R.; Cooper, A. I. et al. Current understanding and challenges of solar-driven hydrogen generation using polymeric photocatalysts. Nat. Energy 2019, 4, 746–760.

    CAS  Google Scholar 

  21. Cao, S. W.; Low, J.; Yu, J. G.; Jaroniec, M. Polymeric photocatalysts based on graphitic carbon nitride. Adv. Mater. 2015, 27, 2150–2176.

    CAS  Google Scholar 

  22. Gao, D. D.; Liu, W. J.; Xu, Y.; Wang, P.; Fan, J. J.; Yu, H. G. Core-shell Ag@Ni cocatalyst on the TiO2 photocatalyst: One-step photoinduced deposition and its improved H2-evolution activity. Appl. Catal. B: Environ. 2020, 260, 118190.

    CAS  Google Scholar 

  23. Luo, Y. D.; Deng, B.; Pu, Y.; Liu, A. N.; Wang, J. M.; Ma, K. L.; Gao, F.; Gao, B.; Zou, W. X.; Dong, L. Interfacial coupling effects in g-C3N4/SrTiO3 nanocomposites with enhanced H2 evolution under visible light irradiation. Appl. Catal. B: Environ. 2019, 247, 1–9.

    CAS  Google Scholar 

  24. Yuan, Y. J.; Shen, Z. K.; Wu, S. T.; Su, Y. B.; Pei, L.; Ji, Z. G.; Ding, M. Y.; Bai, W. F.; Chen, Y. F.; Yu, Z. T. et al. Liquid exfoliation of g-C3N4 nanosheets to construct 2D-2D MoS2/g-C3N4 photocatalyst for enhanced photocatalytic H2 production activity. Appl. Catal. B: Environ. 2019, 246, 120–128.

    CAS  Google Scholar 

  25. Li, X. G.; Bi, W. T.; Zhang, L.; Tao, S.; Chu, W. S.; Zhang, Q.; Luo, Y.; Wu, C. Z.; **e, Y. Single-atom Pt as co-catalyst for enhanced photocatalytic H2 evolution. Adv. Mater. 2016, 28, 2427–2431.

    CAS  Google Scholar 

  26. Ou, M.; Wan, S. P.; Zhong, Q.; Zhang, S. L.; Wang, Y. N. Single Pt atoms deposition on g-C3N4 nanosheets for photocatalytic H2 evolution or NO oxidation under visible light. int. J. Hyd. Energy 2017, 42, 27043–27054.

    CAS  Google Scholar 

  27. Cao, Y. J.; Wang, D. H.; Lin, Y.; Liu, W.; Cao, L. L.; Liu, X. K.; Zhang, W.; Mou, X. L.; Fang, S.; Shen, X. Y. et al. Single Pt atom with highly vacant d-orbital for accelerating photocatalytic H2 evolution. ACS Appl. Energy Mater. 2018, 1, 6082–6088.

    Google Scholar 

  28. Su, H.; Che, W.; Tang, F. M.; Cheng, W. R.; Zhao, X.; Zhang, H.; Liu, Q. H. Valence band engineering via PtII single-atom confinement realizing photocatalytic water splitting. J. Phys. Chem. C 2018, 122, 21108–21114.

    CAS  Google Scholar 

  29. Zhang, L. W.; Long, R.; Zhang, Y. M.; Duan, D. L.; **ong, Y. J.; Zhang, Y. J.; Bi, Y. P. Direct observation of dynamic bond evolution in singleatom Pt/C3N4 catalysts. Angew. Chem., Int. Ed. 2020, 132, 6283–6288.

    Google Scholar 

  30. Zhou, P.; Lv, F.; Li, N.; Zhang, Y. L.; Mu, Z. J.; Tang, Y. H.; Lai, J. P.; Chao, Y. G.; Luo, M. C.; Lin, F. et al. Strengthening reactive metal-support interaction to stabilize high-density Pt single atoms on electron-deficient g-C3N4 for boosting photocatalytic H2 production. Nano Energy 2019, 56, 127–137.

    CAS  Google Scholar 

  31. Zeng, Z. X.; Su, Y.; Quan, X.; Choi, W.; Zhang, G. H.; Liu, N.; Kim, B.; Chen, S.; Yu, H. T.; Zhang, S. S. Single-atom platinum confined by the interlayer nanospace of carbon nitride for efficient photocatalytic hydrogen evolution. Nano Energy 2020, 69, 104409.

    CAS  Google Scholar 

  32. Su, H.; Liu, M. H.; Cheng, W. R.; Zhao, X.; Hu, F. C.; Liu, Q. H. Heterogeneous single-site synergetic catalysis for spontaneous photocatalytic overall water splitting. J. Mater. Chem. A 2019, 7, 11170–11176.

    CAS  Google Scholar 

  33. Yang, Y. L.; Li, F.; Chen, J.; Fan, J. J.; **ang, Q. J. Single Au atoms anchored on aminogroupenriched graphitic carbon nitride for photocatalytic CO2 reduction. ChemSusChem 2020, 13, 1979–1985.

    Google Scholar 

  34. Zeng, L.; Dai, C. H.; Liu, B.; Xue, C. Oxygen-assisted stabilization of single-atom Au during photocatalytic hydrogen evolution. J. Mater. Chem. A 2019, 7, 24217–24221.

    CAS  Google Scholar 

  35. Cao, S. W.; Li, H.; Tong, T.; Chen, H. C.; Yu, A. C.; Yu, J. G.; Chen, H. M. Singleatom engineering of directional charge transfer channels and active sites for photocatalytic hydrogen evolution. Adv. Funct. Mater. 2018, 28, 1802169.

    Google Scholar 

  36. Liu, L. P.; Wu, X.; Wang, L.; Xu, X. J.; Gan, L.; Si, Z. C.; Li, J.; Zhang, Q.; Liu, Y. X.; Zhao, Y. Y. et al. Atomic palladium on graphitic carbon nitride as a hydrogen evolution catalyst under visible light irradiation. Commun. Chem. 2019, 2, 18.

    Google Scholar 

  37. Cao, Y. J.; Chen, S.; Luo, Q. Q.; Yan, H.; Lin, Y.; Liu, W.; Cao, L. L.; Lu, J. L.; Yang, J. L.; Yao, T. et al. Atomiclevel insight into optimizing the hydrogen evolution pathway over a Co1N4 singlesite photocatalyst. Angew. Chem., Int. Ed. 2017, 56, 12191–12196.

    CAS  Google Scholar 

  38. Liu, W.; Cao, L. L.; Cheng, W. R.; Cao, Y. J.; Liu, X. K.; Zhang, W.; Mou, X. L.; **, L. L.; Zheng, X. S.; Che, W. et al. Single-site active cobalt-based photocatalyst with a long carrier lifetime for spontaneous overall water splitting. Angew. Chem., Int. Ed. 2017, 129, 9440–9445.

    Google Scholar 

  39. Huang, P. P.; Huang, J. H.; Pantovich, S. A.; Carl, A. D.; Fenton, T. G.; Caputo, C. A.; Grimm, R. L.; Frenkel, A. I.; Li, G. H. Selective CO2 reduction catalyzed by single cobalt sites on carbon nitride under visible-light irradiation. J. Am. Chem. Soc. 2018, 140, 16042–16047.

    CAS  Google Scholar 

  40. Chu, C. H.; Zhu, Q. H.; Pan, Z. H.; Gupta, S.; Huang, D. H.; Du, Y. H.; Weon, S.; Wu, Y. S.; Muhich, C.; Stavitski, E. et al. Spatially separating redox centers on 2D carbon nitride with cobalt single atom for photocatalytic H2O2 production. Proc. Natl. Acad. Sci. USA 2020, 117, 6376–6382.

    CAS  Google Scholar 

  41. Zhang, W. Y.; Peng, Q.; Shi, L. L.; Yao, Q. S.; Wang, X.; Yu, A. P.; Chen, Z. W.; Fu, Y. S. Merging single-atom-dispersed iron and graphitic carbon nitride to a joint electronic system for high-efficiency photocatalytic hydrogen evolution. Small 2019, 15, 1905166.

    CAS  Google Scholar 

  42. **, X. X.; Wang, R. Y.; Zhang, L. X.; Si, R.; Shen, M.; Wang, M.; Tian, J. J.; Shi, J. L. Electron configuration modulation of nickel single atoms for elevated photocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2020, 132, 6894–6898.

    Google Scholar 

  43. Ji, S. F.; Qu, Y.; Wang, T.; Chen, Y. J.; Wang, G. F.; Li, X.; Dong, J. C.; Chen, Q. Y.; Zhang, W. Y.; Zhang, Z. D. et al. Rare-earth single erbium atoms for enhanced photocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2020, 59, 10651–10657.

    CAS  Google Scholar 

  44. Shi, R.; Zhao, Y. X.; Waterhouse, G. I. N.; Zhang, S.; Zhang, T. R. Defect engineering in photocatalytic nitrogen fixation. ACS Catal. 2019, 9, 9739–9750.

    CAS  Google Scholar 

  45. Huang, P. C.; Liu, W.; He, Z. H.; **ao, C.; Yao, T.; Zou, Y. M.; Wang, C. M.; Qi, Z. M.; Tong, W.; Pan, B. C. et al. Single atom accelerates ammonia photosynthesis. Sci. China Chem. 2018, 61, 1187–1196.

    CAS  Google Scholar 

  46. Guo, X. W.; Chen, S. M.; Wang, H. J.; Zhang, Z. M.; Lin, H.; Song, L.; Lu, T. B. Single-atom molybdenum immobilized on photoactive carbon nitride as efficient photocatalysts for ambient nitrogen fixation in pure water. J. Mater. Chem. A 2019, 7, 19831–19837.

    CAS  Google Scholar 

  47. Liang, Z. B.; Qu, C.; **a, D. D.; Zou, R. Q.; Xu, Q. Atomically dispersed metal sites in MOF-based materials for electrocatalytic and photocatalytic energy conversion. Angew. Chem., Int. Ed. 2018, 57, 9604–9633.

    CAS  Google Scholar 

  48. Yang, H. Z.; Wang, X. Secondary-component incorporated hollow MOFs and derivatives for catalytic and energy-related applications. Adv. Mater. 2019, 31, 1800743.

    Google Scholar 

  49. Zhao, J.; Liu, X.; Wu, Y. P.; Li, D. S.; Zhang, Q. C. Surfactants as promising media in the field of metal-organic frameworks. Coord. Chem. Rev. 2019, 391, 30–43.

    CAS  Google Scholar 

  50. Chen, W. X.; Pei, J. J.; He, C. T.; Wan, J. W.; Ren, H. L.; Wang, Y.; Dong, J. C.; Wu, K. L.; Cheong, W. C.; Mao, J. J. et al. Single tungsten atoms supported on MOF-derived N-doped carbon for robust electrochemical hydrogen evolution. Adv. Mater. 2018, 30, 1800396.

    Google Scholar 

  51. Dou, S.; Dong, C. L.; Hu, Z.; Huang, Y. C.; Chen, J. L.; Tao, L.; Yan, D. F.; Chen, D. W.; Shen, S. H.; Chou, S. L. et al. Atomic-scale CoOx species in metal-organic frameworks for oxygen evolution reaction. Adv. Funct. Mater. 2017, 27, 1702546.

    Google Scholar 

  52. Zhao, C. M.; Dai, X. Y.; Yao, T.; Chen, W. X.; Wang, X. Q.; Wang, J.; Yang, J.; Wei, S. Q.; Wu, Y.; Li, Y. D. Ionic exchange of metal-organic frameworks to access single nickel sites for efficient electroreduction of CO2. J. Am. Chem. Soc. 2017, 139, 8078–8081.

    CAS  Google Scholar 

  53. Abdel-Mageed, A. M.; Rungtaweevoranit, B.; Parlinska-Wojtan, M.; Pei, X. K.; Yaghi, O. M.; Behm, R. J. Highly active and stable single-atom Cu catalysts supported by a metal-organic framework. J. Am. Chem. Soc. 2019, 141, 5201–5210.

    CAS  Google Scholar 

  54. Fang, X. Z.; Shang, Q. C.; Wang, Y.; Jiao, L.; Yao, T.; Li, Y. F.; Zhang, Q.; Luo, Y.; Jiang, H. L. Single Pt atoms confined into a metal-organic framework for efficient photocatalysis. Adv. Mater. 2018, 30, 1705112.

    Google Scholar 

  55. Zuo, Q.; Liu, T. T.; Chen, C. S.; Ji, Y.; Gong, X. Q.; Mai, Y. Y.; Zhou, Y. F. Ultrathin metal-organic framework nanosheets with ultrahigh loading of single Pt atoms for efficient visible-light-driven photocatalytic H2 evolution. Angew. Chem., Int. Ed. 2019, 58, 10198–10203.

    CAS  Google Scholar 

  56. Li, J.; Huang, H. L.; Liu, P.; Song, X. H.; Mei, D. H.; Tang, Y. Z.; Wang, X.; Zhong, C. L. Metal-organic framework encapsulated single-atom Pt catalysts for efficient photocatalytic hydrogen evolution. J. Catal. 2019, 375, 351–360.

    CAS  Google Scholar 

  57. Yang, S. Z.; Pattengale, B.; Lee, S. Huang, J. E. Real-time visualization of active species in a single-site metal-organic framework photocatalyst. ACS Energy Lett. 2018, 3, 532–539.

    CAS  Google Scholar 

  58. Zhang, H. B.; Wei, J.; Dong, J. C.; Liu, G. G.; Shi, L.; An, P. F.; Zhao, G. X.; Kong, J. T.; Wang, X. J.; Meng, X. G. et al. Efficient Visible-light-driven carbon dioxide reduction by a single-atom implanted metal-organic framework. Angew. Chem., Int. Ed. 2016, 55, 14310–14314.

    CAS  Google Scholar 

  59. Yuan, S. S.; Li, X.; Zhu, J. Y.; Zhang, G.; Van Puyvelde, P.; Van der Bruggen, B. Covalent organic frameworks for membrane separation. Chem. Soc. Rev. 2019, 48, 2665–2681.

    CAS  Google Scholar 

  60. Wei, S. J.; Wang, Y.; Chen, W. X.; Li, Z.; Cheong, W. C.; Zhang, Q. H.; Gong, Y.; Gu, L.; Chen, C.; Wang, D. S. et al. Atomically dispersed Fe atoms anchored on COF-derived N-doped carbon nanospheres as efficient multi-functional catalysts. Chem. Sci. 2020, 11, 786–790.

    CAS  Google Scholar 

  61. Zeng, Y. F.; Zou, R. Q.; Zhao, Y. L. Covalent organic frameworks for CO2 capture. Adv. Mater. 2016, 28, 2855–2873.

    CAS  Google Scholar 

  62. Zhong, W. F.; Sa, R. J.; Li, L. Y.; He, Y. J.; Li, L. Y.; Bi, J. H.; Zhuang, Z. Y.; Yu, Y.; Zou, Z. G. A covalent organic framework bearing single Ni sites as a synergistic photocatalyst for selective photoreduction of CO2 to CO. J. Am. Chem. Soc. 2019, 141, 7615–7621.

    CAS  Google Scholar 

  63. Wang, Y.; Mao, J.; Meng, X. G.; Yu, L.; Deng, D. H.; Bao, X. H. Catalysis with two-dimensional materials confining single atoms: Concept, design, and applications. Chem. Rev. 2019, 119, 1806–1854.

    CAS  Google Scholar 

  64. Kong, D.; Han, X. Y.; **e, J. J.; Ruan, Q. S.; Windle, C. D.; Gadipelli, S.; Shen, K.; Bai, Z. M.; Guo, Z. X.; Tang, J. W. Tunable covalent triazine-based frameworks (CTF-0) for visible-light-driven hydrogen and oxygen generation from water splitting. ACS Catal. 2019, 9, 7697–7707.

    CAS  Google Scholar 

  65. Guo, L. P.; Niu, Y. L.; Razzaque, S.; Tan, B.; **, S. B. Design of D-A1-A2 covalent triazine frameworks via copolymerization for photocatalytic hydrogen evolution. ACS Catal. 2019, 9, 9438–9445.

    CAS  Google Scholar 

  66. Li, J.; Liu, P.; Tang, Y. Z.; Huang, H. L.; Cui, H. Z.; Mei, D. H.; Zhong, C. L. Single-atom Pt-N3 sites on the stable covalent triazine framework nanosheets for photocatalytic N2 fixation. ACS Catal. 2020, 10, 2431–2442.

    CAS  Google Scholar 

  67. Li, Y. F.; Chen, C.; Cao, R.; Pan, Z. W.; He, H.; Zhou, K. B. Dualatom Ag2/graphene catalyst for efficient electroreduction of CO2 to CO. Appl. Catal. B: Environ. 2020, 268, 118747.

    CAS  Google Scholar 

  68. Tiwari, J. N.; Singh, A. N.; Sultan, S.; Kim, K. S. Recent advancement of p- and d-block elements, single atoms, and graphene-based photoelectrochemical electrodes for water splitting. Adv. Energy Mater. 2020, 10, 2000280.

    CAS  Google Scholar 

  69. Liang, S. X.; Zhu, C.; Zhang, N. T.; Zhang, S.; Qiao, B. T.; Liu, H.; Liu, X. Y.; Liu, Z.; Song, X. D.; Zhang, H. M. et al. A novel single-atom electrocatalyst Ti1/rGO for efficient cathodic reduction in hybrid photovoltaics. Adv. Mater. 2020, 32, 2000478.

    CAS  Google Scholar 

  70. Gao, C.; Chen, S. M.; Wang, Y.; Wang, J. W.; Zheng, X. S.; Zhu, J. F.; Song, L.; Zhang, W. K.; **ong, Y. J. Heterogeneous single-atom catalyst for visible-light-driven high-turnover CO2 reduction: The role of electron transfer. Adv. Mater. 2018, 30, 1704624.

    Google Scholar 

  71. Zhao, Q.; Yao, W. F.; Huang, C. P.; Wu, Q.; Xu, Q. J. Effective and durable co single atomic cocatalysts for photocatalytic hydrogen production. ACS Appl. Mater. Interfaces 2017, 9, 42734–42741.

    CAS  Google Scholar 

  72. Zhao, Q.; Sun, J.; Li, S. C.; Huang, C. P.; Yao, W. F.; Chen, W.; Zeng, T.; Wu, Q.; Xu, Q. J. Single nickel atoms anchored on nitrogen-doped graphene as a highly active cocatalyst for photocatalytic H2 evolution. ACS Catal. 2018, 8, 11863–11874.

    CAS  Google Scholar 

  73. Zhou, S. Q.; Shang, L.; Zhao, Y. X.; Shi, R.; Waterhouse, G. I. N.; Huang, Y. C.; Zheng, L. R.; Zhang, T. R. Pd single-atom catalysts on nitrogen-doped graphene for the highly selective photothermal hydrogenation of acetylene to ethylene. Adv. Mater. 2019, 31, 1900509.

    Google Scholar 

  74. Wang, Q.; Li, J.; Tu, X. J.; Liu, H. B.; Shu, M.; Si, R.; Ferguson, C. T. J.; Zhang, K. A. I.; Li, R. Single atomically anchored cobalt on carbon quantum dots as efficient photocatalysts for visible light-promoted oxidation reactions. Chem. Mater. 2020, 32, 734–743.

    CAS  Google Scholar 

  75. Neubert, S.; Mitoraj, D.; Shevlin, S. A.; Pulisova, P.; Heimann, M.; Du, Y. H.; Goh, G. K. L.; Pacia, M.; Kruczala, K.; Turner, S. et al. Highly efficient rutile TiO2 photocatalysts with single Cu(II) and Fe(III) surface catalytic sites. J. Mater. Chem. A 2016, 4, 3127–3138.

    CAS  Google Scholar 

  76. Trofimovaite, R.; Parlett, C. M. A.; Kumar, S.; Frattini, L.; Isaacs, M. A.; Wilson, K.; Olivi, L.; Coulson, B.; Debgupta, J.; Douthwaite, R. E. et al. Single atom Cu(I) promoted mesoporous titanias for photocatalytic methyl orange depollution and H2 production. Appl. Catal. B: Environ. 2018, 232, 501–511.

    CAS  Google Scholar 

  77. Lee, B. H.; Park, S.; Kim, M.; Sinha, A. K.; Lee, S. C.; Jung, E.; Chang, W. J.; Lee, K. S.; Kim, J. H.; Cho, S. P. et al. Reversible and cooperative photoactivation of single-atom Cu/TiO2 photocatalysts. Nat. Mater. 2019, 18, 620–626.

    CAS  Google Scholar 

  78. Yuan, L.; Hung, S. F.; Tang, Z. R.; Chen, H. M.; **ong, Y. J.; Xu, Y. J. Dynamic evolution of atomically dispersed Cu species for CO2 photoreduction to solar fuels. ACS Catal. 2019, 9, 4824–4833.

    CAS  Google Scholar 

  79. Jiang, Z. Y.; Sun, W.; Miao, W. K.; Yuan, Z. M.; Yang, G. H.; Kong, F. G.; Yan, T. J.; Chen, J. C.; Huang, B. B.; An, C. H. et al. Living atomically dispersed Cu ultrathin TiO2 nanosheet CO2 reduction photocatalyst. Adv. Sci. 2019, 6, 1900289.

    Google Scholar 

  80. Jeantelot, G.; Qureshi, M.; Harb, M.; Ould-Chikh, S.; Anjum, D. H.; Abou-Hamad, E.; Aguilar-Tapia, A.; Hazemann, J. L.; Takanabe, K.; Basset, J. M. TiO2-supported Pt single atoms by surface organometallic chemistry for photocatalytic hydrogen evolution. Phys. Chem. Chem. Phys. 2019, 21, 24429–24440.

    CAS  Google Scholar 

  81. Chen, Y. J.; Ji, S. F.; Sun, W. M.; Lei, Y. P.; Wang, Q. C.; Li, A.; Chen, W. X.; Zhou, G.; Zhang, Z. D.; Wang, Y. et al. Engineering the atomic interface with single platinum atoms for enhanced photocatalytic hydrogen production. Angew. Chem., Int. Ed. 2020, 59, 1295–1301.

    CAS  Google Scholar 

  82. Hejazi, S.; Mohajernia, S.; Osuagwu, B.; Zoppellaro, G.; Andryskova, P.; Tomanec, O.; Kment, S.; Zbofil, R.; Schmuki, P. On the controlled loading of single platinum atoms as a Co-catalyst on TiO2 anatase for optimized photocatalytic H2 generation. Adv. Mater. 2020, 32, 1908505.

    CAS  Google Scholar 

  83. Liu, S. Z.; Wang, Y. J.; Wang, S. B.; You, M. M.; Hong, S.; Wu, T. S.; Soo, Y. L.; Zhao, Z. Q.; Jiang, G. Y.; Qiu, J. S. et al. Photocatalytic fixation of nitrogen to ammonia by single Ru atom decorated TiO2 nanosheets. ACS Sustainable Chem. Eng. 2019, 7, 6813–6820.

    CAS  Google Scholar 

  84. Ge, X. X.; Zhou, P.; Zhang, Q. H.; **a, Z. H.; Chen, S. L.; Gao, P.; Zhang, Z.; Gu, L.; Guo, S. J. Palladium single atoms on TiO2 as a photocatalytic sensing platform for analyzing the organophosphorus pesticide chlorpyrifos. Angew. Chem., Int. Ed. 2020, 59, 232–236.

    CAS  Google Scholar 

  85. Fujiwara, K.; Pratsinis, S. E. Single Pd atoms on TiO2 dominate photocatalytic NOx removal. Appl. Catal. B: Environ. 2018, 226, 127–134.

    CAS  Google Scholar 

  86. **ao, M.; Zhang, L.; Luo, B.; Lyu, M.; Wang, Z. L.; Huang, H. M.; Wang, S. C.; Du, A. J.; Wang, L. Z. Molten-salt-mediated synthesis of an atomic nickel Co-catalyst on TiO2 for improved photocatalytic H2 evolution. Angew. Chem., Int. Ed. 2020, 59, 7230–7234.

    CAS  Google Scholar 

  87. Di, J.; Chen, C.; Yang, S. Z.; Chen, S. M.; Duan, M. L.; **ong, J.; Zhu, C.; Long, R.; Hao, W.; Chi, Z. et al. Isolated single atom cobalt in Bi3O4Br atomic layers to trigger efficient CO2 photoreduction. Nat. Commun. 2019, 10, 2840.

    Google Scholar 

  88. Wu, X.; Zhang, H. B.; Dong, J. C.; Qiu, M.; Kong, J. T.; Zhang, Y. F.; Li, Y.; Xu, G. L.; Zhang, J.; Ye, J. H. Surface step decoration of isolated atom as electron pum**: Atomic-level insights into visible-light hydrogen evolution. Nano Energy 2018, 45, 109–117.

    CAS  Google Scholar 

  89. Qiu, S. J.; Shen, Y. L.; Wei, G. J.; Yao, S.; **, W.; Shu, M.; Si, R.; Zhang, M.; Zhu, J. F.; An, C. H. Carbon dots decorated ultrathin CdS nanosheets enabling in-situ anchored Pt single atoms: A highly efficient solar-driven photocatalyst for hydrogen evolution. Appl. Catal. B: Environ. 2019, 259, 118036.

    CAS  Google Scholar 

  90. Zhou, P.; Zhang, Q. H.; Xu, Z. K.; Shang, Q. Y.; Wang, L.; Chao, Y. G.; Li, Y. J.; Chen, H.; Lv, F.; Zhang, Q. et al. Atomically dispersed Co-P3 on CdS nanorods with electron-rich feature boosts photocatalysis. Adv. Mater. 2020, 32, 1904249.

    CAS  Google Scholar 

  91. Zhang, H. Z.; Dong, Y. M.; Zhao, S.; Wang, G. L.; Jiang, P. P.; Zhong, J.; Zhu, Y. F. Photochemical preparation of atomically dispersed nickel on cadmium sulfide for superior photocatalytic hydrogen evolution. Appl. Catal. B: Environ. 2020, 261, 118233.

    CAS  Google Scholar 

  92. Li, G. N.; Duan, H. L.; Cheng, W. R.; Wang, C.; Hu, W.; Sun, Z. H.; Tan, H.; Li, N.; Ji, Q. Q.; Wang, Y. et al. Interlayer photoelectron transfer boosted by bridged RuIV atoms in GaS nanosheets for efficient water splitting. ACS Appl. Mater. Interfaces 2019, 11, 45561–45567.

    CAS  Google Scholar 

  93. **ong, Y.; Sun, W. M.; **n, P. Y.; Chen, W. X.; Zheng, X. S.; Yan, W. S.; Zheng, L. R.; Dong, J. C.; Zhang, J.; Wang, D. S. et al. Gramscale synthesis of high-loading single-atomic-site Fe catalysts for effective epoxidation of styrene. Adv. Mater. 2020, 32, 2000896.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the support from the Ministry of Education, Singapore, under AcRF-Tier2 (MOE2018-T2-1-017) and AcRF-Tier1 (MOE2019-T1-002-012, RG102/19).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Can Xue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, L., Xue, C. Single metal atom decorated photocatalysts: Progress and challenges. Nano Res. 14, 934–944 (2021). https://doi.org/10.1007/s12274-020-3099-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3099-8

Keywords

Navigation