Log in

Atomic iron on mesoporous N-doped carbon to achieve dehydrogenation reaction at room temperature

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Atomic non-noble metal materials show the potential to substitute noble metals in catalysis. Herein, melamine formaldehyde resin is developed to synthesize atomic iron on mesoporous nitrogen-doped carbon. The triazine units with abundant nitrogen content and cavity can realize effectively anchoring of single metal atoms. The atomic iron with unique charge and coordination characteristics shows superior catalytic performance in dehydrogenation reaction. Various N-heterocycles compounds and amines can be efficiently dehydrogenated into the corresponding products at room temperature, which is the mildest of all reported reaction conditions even when noble metal catalysts are considered. Therefore, development of atomic non-noble metal catalysts with mesoporous structure may provide an effective way to realize the substitution for noble metals in heterogeneous catalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, X. B.; Lian, C.; Chen, Z.; Chen, C.; Li, Y. D. Preparation of freestanding palladium nanosheets modified with gold nanoparticles at edges. Nano Res. 2018, 11, 4142–4148.

    CAS  Google Scholar 

  2. Malta, G.; Kondrat, S. A.; Freakley, S. J.; Davies, C. J.; Lu, L.; Dawson, S.; Thetford, A.; Gibson, E. K.; Morgan, D. J.; Jones, W. et al. Identification of single-site gold catalysis in acetylene hydrochlorination. Science 2017, 555, 1399–1403.

    Google Scholar 

  3. Agarwal, N.; Freakley, S. J.; McVicker, R. U.; Althahban, S. M.; Dimitratos, N.; He, Q.; Morgan, D. J.; Jenkins, R. L.; Willock, D. J.; Taylor, S. H. et al. Aqueous Au-Pd colloids catalyze selective CH4 oxidation to CH3OH with O2 under mild conditions. Science 2017, 358, 223–227.

    CAS  Google Scholar 

  4. Mateen, M.; Shah, K.; Chen, Z.; Chen, C.; Li, Y. D. Selective hydrogenation of N-heterocyclic compounds over rhodium-copper bimetallic nanocrystals under ambient conditions. Nano Res. 2019, 12, 1631–1634.

    CAS  Google Scholar 

  5. Jagadeesh, R. V.; Surkus, A. E.; Junge, H.; Pohl, M. M.; Radnik, J.; Rabeah, J.; Huan, H. M.; Schünemann, V.; Brückner, A.; Beller, M. Nanoscale Fe2O3-based catalysts for selective hydrogenation of nitroarenes to anilines. Science 2013, 342, 1073–1076.

    CAS  Google Scholar 

  6. Wu, Y.; Chen, Z.; Cheong, W. C.; Zhang, C.; Zheng, L. R.; Yan, W. S.; Yu, R.; Chen, C.; Li, Y. D. Nitrogen-coordinated cobalt nanocrystals for oxidative dehydrogenation and hydrogenation of N-heterocycles. Chem. Sci. 2019, 10, 5345–5352.

    CAS  Google Scholar 

  7. Cui, X. J.; Li, Y. H.; Bachmann, S.; Scalone, M.; Surkus, A. E.; Junge, K.; Topf, C.; Beller, M. Synthesis and characterization of iron-nitrogen-doped graphene/core-shell catalysts: Efficient oxidative dehydrogenation of N-heterocycles. J. Am. Chem. Soc. 2015, 137, 10652–10658.

    CAS  Google Scholar 

  8. Jagadeesh, R. V.; Murugesan, K.; Alshammari, A. S.; Neumann, H.; Pohl, M. M.; Radnik, J.; Beller, M. MOF-derived cobalt nanoparticles catalyze a general synthesis of amines. Science 2017, 358, 326–332.

    CAS  Google Scholar 

  9. Chen, Y. J.; Ji, S. F.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysts: Synthetic strategies and electrochemical applications. Joule 2018, 2, 1242–1264.

    CAS  Google Scholar 

  10. Sun, T. T.; Zhao, S.; Chen, W. X.; Zhai, D.; Dong, J. C.; Wang, Y.; Zhang, S. L.; Han, A. J.; Gu, L.; Yu, R. et al. Single-atomic cobalt sites embedded in hierarchically ordered porous nitrogen-doped carbon as a superior bifunctional electrocatalyst. Proc. Natl. Acad. Sci. USA 2018, 115, 12692–12697.

    CAS  Google Scholar 

  11. Han, Y. H.; Wang, Z. Y.; Xu, R. R.; Zhang, W.; Chen, W. X.; Zheng, L. R.; Zhang, J.; Luo, J.; Wu, K. L.; Zhu, Y. Q. et al. Ordered porous nitrogen-doped carbon matrix with atomically dispersed cobalt sites as an efficient catalyst for dehydrogenation and transfer hydrogenation of N-heterocycles. Angew. Chem., Int. Ed. 2018, 57, 11262–11266.

    CAS  Google Scholar 

  12. Dai, X. Y.; Chen, Z.; Yao, T.; Zheng, L. R.; Lin, Y.; Liu, W.; Ju, H. X.; Zhu, J. F.; Hong, X.; Wei, S. Q. et al. Single Ni sites distributed on N-doped carbon for selective hydrogenation of acetylene. Chem. Commun. 2017, 53, 11568–11571.

    CAS  Google Scholar 

  13. Guo, X. G.; Fang, G. Z.; Li, G.; Ma, H.; Fan, H. J.; Yu, L.; Ma, C.; Wu, X.; Deng, D. H.; Wei, M. M. et al. Direct, nonoxidative conversion of methane to ethylene, aromatics, and hydrogen. Science 2014, 344, 616–619.

    CAS  Google Scholar 

  14. Yang, X. F.; Wang, A. Q.; Qiao, B. T.; Li, J.; Liu, J. Y.; Zhang, T. Single-atom catalysts: A new frontier in heterogeneous catalysis. Acc. Chem. Res. 2013, 46, 1740–1748.

    CAS  Google Scholar 

  15. Gu, J.; Hsu, C. S.; Bai, L. C.; Chen, H. M.; Hu, X. L. Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO. Science 2019, 364, 1091–1094.

    CAS  Google Scholar 

  16. Zhang, Z.; Ma, C.; Tu, Y. C.; Si, R.; Wei, J.; Zhang, S. H.; Wang, Z.; Li, J. F.; Wang, Y.; Deng, D. H. Multiscale carbon foam confining single iron atoms for efficient electrocatalytic CO2 reduction to CO. Nano Res. 2019, 12, 2313–2317.

    CAS  Google Scholar 

  17. Liu, W. G.; Zhang, L. L.; Yan, W. S.; Liu, X. Y.; Yang, X. F.; Miao, S.; Wang, W. T.; Wang, A. Q.; Zhang, T. Single-atom dispersed Co-N-C catalyst: Structure identification and performance for hydrogenative coupling of nitroarenes. Chem. Sci. 2016, 7, 5758–5764.

    CAS  Google Scholar 

  18. Li, F.; Han, G. F.; Noh, H. J.; Kim, S. J.; Lu, Y. L.; Jeong, H. Y.; Fu, Z. P.; Baek, J. B. Boosting oxygen reduction catalysis with abundant copper single atom active sites. Energy Environ. Sci. 2018, 11, 2263–2269.

    CAS  Google Scholar 

  19. Chen, F.; Jiang, X. Z.; Zhang, L. L.; Lang, R.; Qiao, B. T. Single-atom catalysis: Bridging the homo- and heterogeneous catalysis. Chin. J. Catal. 2018, 39, 893–898.

    CAS  Google Scholar 

  20. Li, B. B.; Ju, Z. F.; Zhou, M.; Su, K. Z.; Yuan, D. Q. A reusable MOF-supported single-site zinc(II) catalyst for efficient intramolecular hydroamination of o-alkynylanilines. Angew. Chem., Int. Ed. 2019, 58, 7687–7691.

    CAS  Google Scholar 

  21. Zhang, Z.; **ao, J. P.; Chen, X. J.; Yu, S.; Yu, L.; Si, R.; Wang, Y.; Wang, S. H.; Meng, X. G.; Wang, Y. et al. Reaction mechanisms of well-defined metal-N4 sites in electrocatalytic CO2 reduction. Angew. Chem, Int. Ed. 2018, 57, 16339–16342.

    CAS  Google Scholar 

  22. Zhang, M. L.; Wang, Y. G.; Chen, W. X.; Dong, J. C.; Zheng, L. R.; Luo, J.; Wan, J. W.; Tian, S. B.; Cheong, W. C.; Wang, D. S. et al. Metal (Hydr)oxides@polymer core-shell strategy to metal single-atom materials. J. Am. Chem. Soc. 2017, 139, 10976–10979.

    CAS  Google Scholar 

  23. Han, A. J.; Chen, W. X.; Zhang, S. L.; Zhang, M. L.; Han, Y. H.; Zhang, J.; Ji, S. F.; Zheng, L. R.; Wang, Y.; Gu, L. et al. A polymer encapsulation strategy to synthesize porous nitrogen-doped carbon-nanosphere-supported metal isolated-single-atomic-site catalysts. Adv. Mater. 2018, 30, 1706508.

    Google Scholar 

  24. Wu, K. L.; Chen, X.; Liu, S. J.; Pan, Y.; Cheong, W. C.; Zhu, W.; Cao, X.; Shen, R. G.; Chen, W. X.; Luo, J. et al. Porphyrin-like Fe-N4 sites with sulfur adjustment on hierarchical porous carbon for different rate-determining steps in oxygen reduction reaction. Nano Res. 2018, 11, 6260–6269.

    CAS  Google Scholar 

  25. Pan, Y.; Liu, S. J.; Sun, K. A.; Chen, X.; Wang, B.; Wu, K. L.; Cao, X.; Cheong, W. C.; Shen, R. G.; Han, A. J. et al. A bimetallic Zn/Fe polyphthalocyanine-derived single-atom Fe-N4 catalytic site: A superior trifunctional catalyst for overall water splitting and Zn-Air batteries. Angew. Chem., Int. Ed. 2018, 57, 8614–8618.

    CAS  Google Scholar 

  26. Sun, T. T.; Xu, L. B.; Wang, D. S.; Li, Y. D. Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res. 2019, 12, 2067–2080.

    CAS  Google Scholar 

  27. Zhang, P.; Wang, R. T.; He, M.; Lang, J. W.; Xu, S.; Yan, X. B. 3D hierarchical Co/CoO-graphene-carbonized melamine foam as a superior cathode toward long-life lithium oxygen batteries. Adv. Funct. Mater. 2016, 26, 1354–1364.

    CAS  Google Scholar 

  28. Huang, L.; Zhao, C. Y.; Yao, Y. F.; You, Y.; Wang, Z. W.; Wu, C. P.; Sun, Y.; Tian, J.; Liu, J. G.; Zou, Z. G. Fe/N/C catalyst with high activity for oxygen reduction reaction derived from surfactant modified porous carbon-supported melamine-formaldehyde resin. Int. J. Hydrogen Energy 2016, 41, 11090–11098.

    CAS  Google Scholar 

  29. Lee, J. H.; Lee, H. J.; Lim, S. Y.; Kim, B. G.; Choi, J. W. Combined CO2-philicity and ordered mesoporosity for highly selective CO2 capture at high temperatures. J. Am. Chem. Soc. 2015, 137, 7210–7216.

    CAS  Google Scholar 

  30. Lv, Z. F.; Zhao, D. D.; Xu, S. A. Facile synthesis of mesoporous melamine-formaldehyde spheres for carbon dioxide capture. RSC Adv. 2016, 6, 59619–59623.

    CAS  Google Scholar 

  31. Sui, Z. Y.; Wang, C. Y.; Yang, Q. S.; Shu, K. W.; Liu, Y. W.; Han, B. H.; Wallace, G. G. A highly nitrogen-doped porous graphene—an anode material for lithium ion batteries. J. Mater. Chem. A 2015, 3, 18229–18237.

    CAS  Google Scholar 

  32. Li, X. G.; Bi, W. T.; Chen, M. L.; Sun, Y. X.; Ju, H. X.; Yan, W. S.; Zhu, J. F.; Wu, X. J.; Chu, W. S.; Wu, C. Z. et al. Exclusive Ni-N sites realize near-unity CO selectivity for electrochemical CO2 reduction. J. Am. Chem. Soc. 2017, 139, 14889–14892.

    CAS  Google Scholar 

  33. Yang, Q.; Jia, Y.; Wei, F. F.; Zhuang, L. Z.; Yang, D. J.; Liu, J. Z.; Wang, X.; Lin, S.; Yuan, P.; Yao, X. D. Understanding the activity of Co-N4−xCx, in atomic metal catalysts for oxygen reduction catalysis. Angew. Chem., Int. Ed. 2020, 59, 6122–6127.

    CAS  Google Scholar 

  34. Wang, J.; You, R.; Zhao, C.; Zhang, W.; Liu, W.; Fu, X. P.; Li, Y. Y.; Zhou, F. Y.; Zheng, X. S.; Xu, Q. et al. N-coordinated dual-metal singlesite catalyst for low-temperature CO oxidation. ACS Catal. 2020, 10, 2754–2761.

    CAS  Google Scholar 

  35. Chen, G. B.; Liu, P.; Liao, Z. Q.; Sun, F. F.; He, Y. H.; Zhong, H. X.; Zhang, T.; Zschech, E.; Chen, M. W.; Wu, G. et al. Zinc-mediated template synthesis of Fe-N-C electrocatalysts with densely accessible Fe-Nx active sites for efficient oxygen reduction. Adv. Mater. 2020, 32, 1907399.

    CAS  Google Scholar 

  36. Wang, Z. H.; **, H. H.; Meng, T.; Liao, K.; Meng, W. Q.; Yang, J. L.; He, D. P.; **ong, Y. L.; Mu, S. C. Fe, Cu-coordinated ZIF-derived carbon framework for efficient oxygen reduction reaction and zinc-air batteries. Adv. Funct. Mater. 2018, 28, 1802596.

    Google Scholar 

  37. Zhu, Q. L.; **a, W.; Zheng, L. R.; Zou, R. Q.; Liu, Z.; Xu, Q. Atomically dispersed Fe/N-doped hierarchical carbon architectures derived from a metal-organic framework composite for extremely efficient electrocatalysis. ACS Energy Lett. 2017, 2, 504–511.

    CAS  Google Scholar 

  38. Zhou, X. J.; Bai, Z. Y.; Wu, M. J.; Qiao, J. L.; Chen, Z. W. 3-dimensional porous N-doped graphene foam as a non-precious catalyst for the oxygen reduction reaction. J. Mater. Chem. A 2015, 3, 3343–3350.

    CAS  Google Scholar 

  39. Wu, G.; Johnston, C. M.; Mack, N. H.; Artyushkova, K.; Ferrandon, M.; Nelson, M.; Lezama-Pacheco, J. S.; Conradson, S. D.; More, K. L.; Myers, D. J. et al. Synthesis-structure-performance correlation for polyaniline-Me-C non-precious metal cathode catalysts for oxygenreduction in fuelcells. J. Mater. Chem. 2011, 21, 11392–11405.

    CAS  Google Scholar 

  40. Liang, H. W.; Wei, W.; Wu, Z. S.; Feng, X. L.; Mullen, K. Mesoporous metal-nitrogen-doped carbon electrocatalysts for highly efficient oxygen reduction reaction. J. Am. Chem. Soc. 2013, 135, 16002–16005.

    CAS  Google Scholar 

  41. Shen, H. J.; Gracia-Espino, E.; Ma, J. Y.; Zang, K. T.; Luo, J.; Wang, L.; Gao, S. S.; Mamat, X.; Hu, G. Z.; Wagberg, T. et al. Synergistic effects between atomically dispersed Fe-N-C and C--S-C for the oxygen reduction reaction in acidic media. Angew. Chem., Int. Ed. 2017, 56, 13800–13804.

    CAS  Google Scholar 

  42. **ao, J. W.; Xu, Y. Y.; **a, Y. T.; **, J. B.; Wang, S. Ultra-small Fe2N nanocrystals embedded into mesoporous nitrogen-doped graphitic carbon spheres as a highly active, stable, and methanol-tolerant electrocatalyst for the oxygen reduction reaction. Nano Energy 2016, 24, 121–129.

    CAS  Google Scholar 

  43. Wang, X.; Chen, W. X.; Zhang, L.; Yao, T.; Liu, W.; Lin, Y.; Ju, H. X.; Dong, J. C.; Zheng, L. R.; Yan, W. S. et al. Uncoordinated amine groups of metal-organic frameworks to anchor single Ru sites as chemoselective catalysts toward the hydrogenation of quinoline. J. Am. Chem. Soc. 2017, 139, 9419–9422.

    CAS  Google Scholar 

  44. Chen, P. Z.; Zhou, T. P.; **ng, L. L.; Xu, K.; Tong, Y.; **e, H.; Zhang, L. D.; Yan, W. S.; Chu, W. S.; Wu, C. Z. et al. Atomically dispersed iron-nitrogen species as electrocatalysts for bifunctional oxygen evolution and reduction reactions. Angew. Chem., Int. Ed. 2017, 56, 610–614.

    CAS  Google Scholar 

  45. Li, J. L.; Liu, G. L.; Long, X. D.; Gao, G.; Wu, J.; Li, F. W. Different active sites in a bifunctional Co@N-doped graphene shells based catalyst for the oxidative dehydrogenation and hydrogenation reactions. J. Catal. 2017, 355, 53–62.

    CAS  Google Scholar 

  46. Jaiswal, G.; Landge, V. G.; Jagadeesan, D.; Balaraman, E. Iron-based nanocatalyst for the acceptorless dehydrogenation reactions. Nat. Commun. 2017, 8, 2147.

    Google Scholar 

  47. Clot, E.; Eisenstein, O.; Crabtree, R. H. Computational structure-activity relationships in H2 storage: How placement of N atoms affects release temperatures in organic liquid storage materials. Chem. Commun. 2007, 2231–2233.

  48. Pan, Y.; Chen, Y. J.; Wu, K. L.; Chen, Z.; Liu, S. J.; Cao, X.; Cheong, W. C.; Meng, T.; Luo, J.; Zheng, L. R. et al. Regulating the coordination structure of single-atom Fe-NxCy catalytic sites for benzene oxidation. Nat. Commun. 2019, 10, 4290.

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 21901007 and 21866032), and we acknowledge the BL12B beamline of National Synchrotron Radiation Laboratory (NSRL) in Hefei and 1W1B station of Bei**g Synchrotron Radiation Facility (BSRF). Our work is completed on the “Explorer 100” cluster system of Tsinghua HPC Platform.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Chen.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Yang, W., Wu, Y. et al. Atomic iron on mesoporous N-doped carbon to achieve dehydrogenation reaction at room temperature. Nano Res. 13, 3075–3081 (2020). https://doi.org/10.1007/s12274-020-2975-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2975-6

Keywords

Navigation