Log in

Scalable synthesis of nanoporous silicon microparticles for highly cyclable lithium-ion batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Nanoporous silicon is a promising anode material for high energy density batteries due to its high cycling stability and high tap density compared to other nanostructured anode materials. However, the high cost of synthesis and low yield of nanoporous silicon limit its practical application. Here, we develop a scalable, low-cost top-down process of controlled oxidation of Mg2Si in the air, followed by HCl removal of MgO to generate nanoporous silicon without the use of HF. By controlling the synthesis conditions, the oxygen content, grain size and yield of the porous silicon are simultaneously optimized from commercial standpoints. In situ environmental transmission electron microscopy reveals the reaction mechanism; the Mg2Si microparticle reacts with O2 to form MgO and Si, while preventing SiO2 formation. Owing to the low oxygen content and microscale secondary structure, the nanoporous silicon delivers a higher initial reversible capacity and initial Coulombic efficiency compared to commercial Si nanoparticles (3,033 mAh/g vs. 2,418 mAh/g, 84.3% vs. 73.1%). Synthesis is highly scalable, and a yield of 90.4% is achieved for the porous Si nanostructure with the capability to make an excess of 10 g per batch. Our synthetic nanoporous silicon is promising for practical applications in next generation lithium-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aricò, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366–377.

    Google Scholar 

  2. Armand, M.; Tarascon, J. M. Building better batteries. Nature2008, 451, 652–657.

    CAS  Google Scholar 

  3. Liu, Y. Y.; Zhou, G. M.; Liu, K.; Cui. Y. Design of complex nano-materials for energy storage: Past success and future opportunity. Acc. Chem. Res. 2017, 50, 2895–2905.

    CAS  Google Scholar 

  4. Sun, Y. M.; Liu, N.; Cui. Y. Promises and challenges of nano-materials for lithium-based rechargeable batteries. Nat. Energy2016, 1, 16071.

    CAS  Google Scholar 

  5. Pomerantseva, E.; Bonaccorso, F.; Feng, X. L.; Cui, Y.; Gogotsi, Y. Energy storage: The future enabled by nanomaterials. Science2019, 366, eaan8285.

    CAS  Google Scholar 

  6. Chan, C. K.; Peng, H. L.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2008, 3, 31–35.

    CAS  Google Scholar 

  7. Yang, S. F.; Zavalij, P. Y.; Whittingham. M. S. Anodes for lithium batteries: Tin revisited. Electrochem. Commun. 2003, 5, 587590.

    Google Scholar 

  8. Zheng, G. Y.; Lee, S. W.; Liang, Z.; Lee, H. W.; Yan, K.; Yao, H. B.; Wang, H. T.; Li, W. Y.; Chu, S.; Cui, Y. Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat. Nanotechnol. 2014, 9, 618–623.

    CAS  Google Scholar 

  9. Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 2012, 11, 19–29.

    CAS  Google Scholar 

  10. Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science2011, 334, 928–935.

    CAS  Google Scholar 

  11. Wang, J. Y.; Tang, H. J.; Zhang, L. J.; Ren, H.; Yu, R. B.; **, Q.; Qi, J.; Mao, D.; Yang, M.; Wang, Y. et al. Multi-shelled metal oxides prepared via an anion-adsorption mechanism for lithium-ion batteries. Nat. Energy2016, 1, 15050.

    Google Scholar 

  12. Wu, H.; Cui. Y. Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today2012, 7, 414–429.

    CAS  Google Scholar 

  13. Wang, J. Y.; Cui, Y.; Wang. D. Design of hollow nanostructures for energy storage, conversion and production. Adv. Mater. 2019, 31, 1801993.

    Google Scholar 

  14. Li, Y. Z.; Yan, K.; Lee, H. W.; Lu, Z. D.; Liu, N.; Cui, Y. Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes. Nat. Energy2016, 1, 15029.

    CAS  Google Scholar 

  15. Wang, J. Y.; Liao, L.; Li, Y. Z.; Zhao, J.; Shi, F. F.; Yan, K.; Pei, A.; Chen, G. X.; Li, G. D.; Lu, Z. Y. et al. Shell-protective secondary silicon nanostructures as pressure-resistant high-volumetric-capacity anodes for lithium-ion batteries. Nano Lett. 2018, 18, 7060–7065.

    CAS  Google Scholar 

  16. Wang, J. Y.; Liao, L.; Lee, H. R.; Shi, F. F.; Huang, W.; Zhao, J.; Pei, A.; Tang, J.; Zheng, X. L.; Chen, W. et al. Surface-engineered mesoporous silicon microparticles as high-Coulombic-efficiency anodes for lithium-ion batteries. Nano Energy2019, 61, 404–410.

    CAS  Google Scholar 

  17. Huang, W.; Wang, J.; Braun, M. R.; Zhang, Z.; Li, Y.; Boyle, D. T.; Mclntyre, P. C.; Cui, Y. Dynamic structure and chemistry of the silicon solid-electrolyte interphase visualized by cryogenic electron microscopy. Matter2019, 1, 1232–1245.

    Google Scholar 

  18. Li, Y. Z.; Huang, W.; Li, Y. B.; Pei, A.; Boyle, D. T.; Cui, Y. Correlating structure and function of battery interphases at atomic resolution using Cryoelectron microscopy. Joule2018, 2, 2167–2177.

    CAS  Google Scholar 

  19. Huang, W.; Boyle, D. T.; Li, Y. Z.; Li, Y. B.; Pei, A.; Chen, H.; Cui, Y. Nanostructural and electrochemical evolution of the solid-electrolyte interphase on CuO nanowires revealed by cryogenic-electron microscopy and impedance spectroscopy. ACS Nano2019, 13, 737–744.

    CAS  Google Scholar 

  20. Li, Y. Z.; Li, Y. B.; Cui, Y. Catalyst: How Cryo-EM shapes the development of next-generation batteries. Chem2018, 4, 2250–2256.

    CAS  Google Scholar 

  21. Liu, N.; Wu, H.; McDowell, M. T.; Yao, Y.; Wang, C. M.; Cui, Y. A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes. Nano Lett. 2012, 12, 3315–3321.

    CAS  Google Scholar 

  22. Zhou, Y. L.; Jiang, X. L.; Chen, L.; Yue, J.; Xu, H. Y.; Yang, J.; Qian, Y. T. Novel mesoporous silicon nanorod as an anode material for lithium ion batteries. Electrochim. Acta2014, 127, 252–258.

    CAS  Google Scholar 

  23. Soleimani-Amiri, S.; Tali, S. A. S.; Azimi, S.; Sanaee, Z.; Mohajerzadeh, S. Highly featured amorphous silicon nanorod arrays for high-performance lithium-ion batteries. Appl. Phys. Lett. 2014, 105, 193903.

    Google Scholar 

  24. Cui, L. F.; Ruo, R.; Chan, C. K.; Peng, H. L.; Cui, Y. Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes. Nano Lett. 2009, 9, 491–495.

    CAS  Google Scholar 

  25. **ao, Y.; Hao, D.; Chen, H. X.; Gong, Z. L.; Yang, Y. Economical synthesis and promotion of the electrochemical performance of silicon nanowires as anode material in Li-ion batteries. ACS Appl. Mater. Interfaces2013, 5, 1681–1687.

    CAS  Google Scholar 

  26. Park, M. H.; Kim, M. G.; Joo, J.; Kim, K.; Kim, J.; Ahn, S.; Cui, Y.; Choi, J. Silicon nanotube battery anodes. Nano Lett. 2009, 9, 3844–3847.

    CAS  Google Scholar 

  27. Wu, H.; Chan, G.; Choi, J. W.; Ryu, I.; Yao, Y.; McDowell, M. T.; Lee, S. W.; Jackson, A.; Yang, Y.; Hu, L. B. et al. Stable cycling of double-walled Si nanotube battery anodes through solid-electrolyte interphase control. Nat. Nanotechnol. 2012, 7, 310–315.

    CAS  Google Scholar 

  28. Ryu, J.; Hong, D.; Choi, S.; Park, S. Synthesis of ultrathin Si nanosheets from natural clays for lithium-ion battery anodes. ACS Nano2016, 10, 2843–2851.

    CAS  Google Scholar 

  29. Kim, W. S.; Hwa, Y.; Shin, J. H.; Yang, M.; Sohn, H. J.; Hong, S. H. Scalable synthesis of silicon nanosheets from sand as an anode for Li-ion batteries. Nanoscale2014, 6, 4297–4302.

    CAS  Google Scholar 

  30. Liu, N.; Lu, Z. D.; Zhao, J.; McDowell, M. T.; Lee, H. W.; Zhao, W. T.; Cui, Y. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat. Nanotechnol. 2014, 9, 187–192.

    CAS  Google Scholar 

  31. Yi, R.; Dai, F.; Gordin, M. L.; Chen, S. R.; Wang, D. H. Micro-sized Si-C composite with interconnected nanoscale building blocks as high-performance anodes for practical application in lithium-ion batteries. Adv. Energy Mater. 2013, 3, 295–300.

    CAS  Google Scholar 

  32. Kim, H.; Han, B.; Choo, J.; Cho. J. Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries. Angew. Chem., Int. Ed. 2008, 47, 10151.

    CAS  Google Scholar 

  33. Ren, W. F.; Wang, Y. H.; Zhang, Z. L.; Tan, Q. Q.; Zhong, Z. Y.; Su, F. B. Carbon-coated porous silicon composites as high performance Li-ion battery anode materials: Can the production process be cheaper and greener. J. Mater. Chem. A2016, 4, 552–560.

    CAS  Google Scholar 

  34. Liu, N.; Huo, K. F.; McDowell, M. T.; Zhao, J.; Cui. Y. Rice husks as a sustainable source of nanostructured silicon for high performance Li-ion battery anodes. Sci. Rep. 2013, 3, 1919.

    Google Scholar 

  35. Liang, J. W.; Wei, D. H.; Lin, N.; Zhu, Y. C.; Li, X. N.; Zhang, J. J.; Fan, L.; Qian, Y. T. Low temperature chemical reduction of fusional sodium metasilicate nonahydrate into a honeycomb porous silicon nanostructure. Chem. Commun. 2014, 50, 6856–6859.

    CAS  Google Scholar 

  36. Ge, M. Y.; Lu, Y. H.; Ercius, P.; Rong, J. P.; Fang, X.; Mecklenburg, M.; Zhou, C. W. Large-scale fabrication, 3D tomography, and lithium-ion battery application of porous silicon. Nano Lett. 2014, 14, 261–268.

    CAS  Google Scholar 

  37. Liang, J. W.; Li, X. N.; Hou, Z. G.; Guo, C.; Zhu, Y. C.; Qian, Y. T. Nanoporous silicon prepared through air-oxidation demagnesiation of Mg2Si and properties of its lithium ion batteries. Chem. Commun. 2015, 51, 7230–7233.

    CAS  Google Scholar 

  38. Chen, M.; Li, B.; Liu, X. J.; Zhou, L.; Yao, L.; Zai, J. T.; Qian, X. F.; Yu, X. B. Boron-doped porous Si anode materials with high initial Coulombic efficiency and long cycling stability. J. Mater. Chem. A2018, 6, 3022–3027.

    CAS  Google Scholar 

  39. Chen, W.; Fan, Z. L.; Dhanabalan, A.; Chen, C. H.; Wang, C. L. Mesoporous silicon anodes prepared by Magnesiothermic reduction for lithium ion batteries. J. Electrochem. Soc. 2011, 158, A1055–A1059.

    CAS  Google Scholar 

  40. Chun, J. Y.; An, S.; Lee, J. Highly mesoporous silicon derived from waste iron slag for high performance lithium ion battery anodes. J. Mater. Chem. A2015, 3, 21899–21906.

    CAS  Google Scholar 

  41. Ruffo, R.; Hong, S. S.; Chan, C. K.; Huggins, R. A.; Cui. Y. Impedance analysis of silicon nanowire lithium ion battery anodes. J. Phys. Chem. C2009, 113, 11390–11398.

    CAS  Google Scholar 

  42. Gauthier, M.; Mazouzi, D.; Reyter, D.; Lestriez, B.; Moreau, P.; Guyomard, D.; Roue, L. A low-cost and high performance ball-milled Si-based negative electrode for high-energy Li-ion batteries. Energy Environ. Sci. 2013, 6, 2145–2155.

    CAS  Google Scholar 

  43. Lin, D. C.; Lu, Z. D.; Hsu, P. C.; Lee, H. R.; Liu, N.; Zhao, J.; Wang, H. T.; Liu, C.; Cui, Y. A high tap density secondary silicon particle anode fabricated by scalable mechanical pressing for lithium-ion batteries. Energy Environ. Sci. 2015, 8, 2371–2376.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Samsung SDI. Part of this work was performed at the Stanford Nano Shared Facilities (SNSF) and Stanford Nanofabrication Facility (SNF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Cui.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Huang, W., Kim, Y.S. et al. Scalable synthesis of nanoporous silicon microparticles for highly cyclable lithium-ion batteries. Nano Res. 13, 1558–1563 (2020). https://doi.org/10.1007/s12274-020-2770-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2770-4

Keywords

Navigation