Log in

Speeding up carbon nanotube integrated circuits through three-dimensional architecture

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Semiconducting carbon nanotube (CNT) field effect transistor (FET) is attractive for constructing three-dimensional (3D) integrated circuits (ICs) because of its low-temperature processes and low power dissipation. However, CNT based 3D ICs reported usually suffered from lower performance than that of monolayer CNT ICs. In this work, we develop a 3D IC technology through integrating multi-layer high performance CNT film FETs into one chip, and show that it promotes the operation speed of CNT based 3D ICs considerably. We also explore the advantage on ICs of 3D architecture, which brings 38% improvement on speed over two-dimensional (2D) one. Specially, we demonstrate the fabrication of 3D five-stage ring-oscillator circuits with an oscillation frequency of up to 680 MHz and stage delay of 0.15 ns, which represents the highest speed of 3D CNT-based ICs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dennard, R. H.; Gaensslen, F. H.; Yu, H. N.; Rideout, V. L.; Bassous, E.; Leblanc, A. R. Design of ion-implanted MOSFET’s with very small physical dimensions. Proc. IEEE 1999, 87, 668–678.

    Article  Google Scholar 

  2. Davis, J. A.; Venkatesan, R.; Kaloyeros, A.; Beylansky, M.; Souri, S. J.; Banerjee, K.; Saraswat, K. C.; Rahman, A.; Reif, R.; Meindl, J. D. Interconnect limits on gigascale integration (GSI) in the 21st century. Proc. IEEE 2001, 89, 305–324.

    Article  Google Scholar 

  3. Frank, D. J.; Dennard, R. H.; Nowak, E.; Solomon, P. M.; Taur, Y.; Wong, H. S. P. Device scaling limits of Si MOSFETs and their application dependencies. Proc. IEEE 2001, 89, 259–288.

    Article  Google Scholar 

  4. Skotnicki, T.; Fenouillet-Beranger, C.; Gallon, C.; Boeuf, F.; Monfray, S.; Payet, F.; Pouydebasque, A.; Szczap, M.; Farcy, A.; Arnaud, F. et al. Innovative materials, devices, and CMOS technologies for low-power mobile multimedia. IEEE Trans. Electron Devices 2008, 55, 96–130.

    Article  Google Scholar 

  5. Lieber, C. M. Nanoscale science and technology: Building a big future from small things. MRS Bull. 2003, 28, 486–491.

    Article  Google Scholar 

  6. Thelander, C.; Agarwal, P.; Brongersma, S.; Eymery, J.; Feiner, L. F.; Forchel, A.; Scheffler, M.; Riess, W.; Ohlsson, B.; Gösele, U. et al. Nanowire-based one-dimensional electronics. Materialstoday 2006, 9, 28–35.

    Google Scholar 

  7. McEuen, P. L.; Fuhrer, M. S.; Park, H. Single-walled carbon nanotube electronics. IEEE Trans. Nanotechnol. 2002, 1, 78–85.

    Article  Google Scholar 

  8. Javey, A.; Guo, J.; Wang, Q.; Lundstrom, M.; Dai, H. J. Ballistic carbon nanotube field-effect transistors. Nature 2003, 424, 654–657.

    Article  Google Scholar 

  9. Topol, A. W.; La Tulipe, D. C.; Shi, L.; Frank, D. J.; Bernstein, K.; Steen, S. E.; Kumar, A.; Singco, G. U.; Young, A. M.; Guarini, K. W. et al. Three-dimensional integrated circuits. IBM J. Res. Dev. 2006, 50, 491–506.

    Article  Google Scholar 

  10. Das, S.; Chandrakasan, A.; Reif, R. Three-dimensional integrated circuits: Performance, design methodology, and CAD tools. In Proceedings of the IEEE Computer Society Annual Symposium on VLSI, 2003, Tampa, FL, USA, 2003, pp 13–18.

    Chapter  Google Scholar 

  11. England, L.; Arsovski, I. Advanced packaging saves the day!—How TSV technology will enable continued scaling. In Proceedings of 2017 IEEE International Electron Devices Meeting, San Francisco, CA, 2017, pp 3.5.1-3.5.4.

    Google Scholar 

  12. Kim, K. M.; Sinha, S.; Cline, B.; Yeric, G.; Lim, S. K. Four-tier monolithic 3D ICs: Tier partitioning methodology and power benefit study. In Proceedings of the 2016 International Symposium on Low Power Electronics and Design. San Francisco Airport, CA, USA, 2016, pp 70–75.

    Chapter  Google Scholar 

  13. Lin, M. J.; El Gamal, A.; Lu, Y. C.; Wong, S. Performance benefits of monolithically stacked 3-D FPGA. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2007, 26, 216–229.

    Article  Google Scholar 

  14. Sabry Aly, M. M.; Gao, M. Y.; Hills, G.; Lee, C. S.; Pitner, G.; Shulaker, M. M.; Wu, T. F.; Asheghi, M.; Bokor, J.; Franchetti, F. et al. Energy-efficient abundant-data computing: The N3XT 1,000x. Computer 2015, 48, 24–33.

    Article  Google Scholar 

  15. Wu, T. T.; Shen, C. H.; Shieh, J. M.; Huang, W. H.; Wang, H. H.; Hsueh, F. K.; Chen, H. C.; Yang, C. C.; Hsieh, T. Y.; Chen, B. Y. et al. Low-cost and TSV-free monolithic 3D-IC with heterogeneous integration of logic, memory and sensor analogy circuitry for Internet of Things. In Proceedings of 2015 IEEE International Electron Devices Meeting, Washington, DC, USA, 2015, pp 25.4.1-25.4.4.

    Google Scholar 

  16. Hsueh, F. K.; Shen, C. H.; Shieh, J. M.; Li, K. S.; Chen, H. C.; Huang, W. H.; Wang, H. H.; Yang, C. C.; Hsieh, T. Y.; Lin, C. H. et al. First fully functionalized monolithic 3D+ IoT chip with 0.5 V light-electricity power management, 6.8 GHz wireless-communication VCO, and 4-layer vertical ReRAM. In Proceedings of 2016 IEEE International Electron Devices Meeting, San Francisco, CA, USA, 2016, pp 2.3.1-2.3.4.

    Google Scholar 

  17. Fenouillet-Beranger, C.; Beaurepaire, S.; Deprat, F.; de Sousa, A. A.; Brunet, L.; Batude, P.; Rozeau, O.; Andrieu, F.; Besombes, P.; Samson, M. P. et al. Guidelines for intermediate back end of line (BEOL) for 3D sequential integration. 2017 47th European Solid-State Device Research Conference, Leuven, Belgium, 2017, pp 252–255.

    Chapter  Google Scholar 

  18. Vinet, M.; Batude, P.; Tabone, C.; Previtali, B.; LeRoyer, C.; Pouydebasque, A.; Clavelier, L.; Valentian, A.; Thomas, O.; Michaud, S. et al. 3D monolithic integration: Technological challenges and electrical results. Microelectron. Eng. 2011, 88, 331–335.

    Article  Google Scholar 

  19. Qiu, C. G.; Zhang, Z. Y.; **ao, M. M.; Yang, Y. J.; Zhong, D. L.; Peng, L. M. Scaling carbon nanotube complementary transistors to 5-nm gate lengths. Science 2017, 355, 271–276.

    Article  Google Scholar 

  20. Cavin, R. K.; Lugli, P.; Zhirnov, V. V. Science and engineering beyond Moore’s law. Proc. IEEE 2012, 100, 1720–1749.

    Article  Google Scholar 

  21. Guo, J.; Hasan, S.; Javey, A.; Bosman, G.; Lundstrom, M. S. Assessment of high-frequency performance potential of carbon nanotube transistors. IEEE Trans. Nanotechnol. 2005, 4, 715–721.

    Article  Google Scholar 

  22. Tulevski, G. S.; Franklin, A. D.; Frank, D.; Lobez, J. M.; Cao, Q.; Park, H.; Afzali, A.; Han, S. J.; Hannon, J. B.; Haensch, W. Toward high-performance digital logic technology with carbon nanotubes. ACS Nano 2014, 8, 8730–8745.

    Article  Google Scholar 

  23. Cao, Q.; Tersoff, J.; Farmer, D. B.; Zhu, Y.; Han, S. J. Carbon nanotube transistors scaled to a 40-nanometer footprint. Science 2017, 356, 1369–1372.

    Article  Google Scholar 

  24. Franklin, A. D.; Luisier, M.; Han, S. J.; Tulevski, G.; Breslin, C. M.; Gignac, L.; Lundstrom, M. S.; Haensch, W. Sub-10 nm carbon nanotube transistor. Nano Lett. 2012, 12, 758–762.

    Article  Google Scholar 

  25. Shulaker, M. M.; Hills, G.; Park, R. S.; Howe, R. T.; Saraswat, K.; Wong, H. S. P.; Mitra, S. Three-dimensional integration of nanotechnologies for computing and data storage on a single chip. Nature 2017, 547, 74–78.

    Article  Google Scholar 

  26. Wei, H.; Patil, N.; Lin, A.; Wong, H. S. P.; Mitra, S. Monolithic three-dimensional integrated circuits using carbon nanotube FETs and interconnects. In Proceedings of 2009 IEEE International Electron Devices Meeting, Baltimore, MD, USA, 2009, pp 1–4.

    Google Scholar 

  27. Wei, H.; Shulaker, M.; Wong, H. S. P.; Mitra, S. Monolithic three-dimensional integration of carbon nanotube FET complementary logic circuits. In Proceedings of 2013 IEEE International Electron Devices Meeting, IEEE, 2013, pp 19.7.1-19.7.4.

    Google Scholar 

  28. Chen, B. Y.; Zhang, P. P.; Ding, L.; Han, J.; Qiu, S.; Li, Q. W.; Zhang, Z. Y.; Peng, L. M. Highly uniform carbon nanotube field-effect transistors and medium scale integrated circuits. Nano Lett. 2016, 16, 5120–5128.

    Article  Google Scholar 

  29. Zhong, D. L.; **ao, M. M.; Zhang, Z. Y.; Peng, L. M. Solution-processed carbon nanotubes based transistors with current density of 1.7 mA/μm and peak transconductance of 0.8 mS/μm. 2017 IEEE International Electron Devices Meeting, San Francisco, CA, USA, 2017, pp 5.6.1-5.6.4.

    Google Scholar 

  30. Yang, Y. J.; Ding, L.; Han, J.; Zhang, Z. Y.; Peng, L. M. High-performance complementary transistors and medium-scale integrated circuits based on carbon nanotube thin films. ACS Nano 2017, 11, 4124–4132.

    Article  Google Scholar 

  31. **ao, M. M.; Liang, S. B.; Han, J.; Zhong, D. L.; Liu, J. X.; Zhang, Z. Y.; Peng, L. M. Batch fabrication of ultrasensitive carbon nanotube hydrogen sensors with sub-ppm detection limit. ACS Sens. 2018, 3, 749–756.

    Article  Google Scholar 

  32. Geier, M. L.; McMorrow, J. J.; Xu, W. C.; Zhu, J.; Kim, C. H.; Marks, T. J.; Hersam, M. C. Solution-processed carbon nanotube thin-film complementary static random access memory. Nat. Nanotechnol. 2015, 10, 944–948.

    Article  Google Scholar 

  33. Ding, L.; Liang, S. B.; Pei, T.; Zhang, Z. Y.; Wang, S.; Zhou, W. W.; Liu, J.; Peng, L. M. Carbon nanotube based ultra-low voltage integrated circuits: Scaling down to 0.4 V. Appl. Phys. Lett. 2012, 100, 263116.

  34. Banerjee, K.; Souri, S. J.; Kapur, P.; Saraswat, K. C. 3-D ICs: A novel chip design for improving deep-submicrometer interconnect performance and systems-on-chip integration. Proc. IEEE 2001, 89, 602–633.

    Article  Google Scholar 

  35. Zhao, Y. D.; Li, Q. Q.; **ao, X. Y.; Li, G. H.; **, Y. H.; Jiang, K. L.; Wang, J. P.; Fan, S. S. Three-dimensional flexible complementary metal- oxide-semiconductor logic circuits based on two-layer stacks of single-walled carbon nanotube networks. ACS Nano 2016, 10, 2193–2202.

    Article  Google Scholar 

  36. Zhang, P. P.; Qiu, C. G.; Zhang, Z. Y.; Ding, L.; Chen, B. Y.; Peng, L. M. Performance projections for ballistic carbon nanotube FinFET at circuit level. Nano Res. 2016, 9, 1785–1794.

    Article  Google Scholar 

  37. Wang, C.; Zhang, J. L.; Ryu, K.; Badmaev, A.; de Arco, L. G.; Zhou, C. W. Wafer-scale fabrication of separated carbon nanotube thin-film transistors for display applications. Nano Lett. 2009, 9, 4285–4291.

    Article  Google Scholar 

  38. Zhao, C. Y.; Zhong, D. L.; Qiu, C. G.; Han, J.; Zhang, Z. Y.; Peng, L. M. Improving subthreshold swing to thermionic emission limit in carbon nanotube network film-based field-effect. Appl. Phys. Lett. 2018, 112, 053102.

  39. Kaufman, F. B.; Thompson, D. B.; Broadie, R. E.; Jaso, M. A.; Guthrie, W. L.; Pearson, D. J.; Small, M. B. Chemical-mechanical polishing for fabricating patterned W metal features as chip interconnects. J. Electrochem. Soc. 1991, 138, 3460–3465.

    Article  Google Scholar 

  40. Ahn, J. H.; Kim, H. S.; Lee, K. J.; Jeon, S.; Kang, S. J.; Sun, Y. G.; Nuzzo, R. G.; Rogers, J. A. Heterogeneous three-dimensional electronics by use of printed semiconductor nanomaterials. Science 2006, 314, 1754–1757.

    Article  Google Scholar 

  41. Nam, S. W.; Jiang, X. C.; **ong, Q. H.; Ham, D.; Lieber, C. M. Vertically integrated, three-dimensional nanowire complementary metal-oxide-semiconductor circuits. Proc. Natl. Acad. Sci. USA 2009, 106, 21035–21038.

    Article  Google Scholar 

  42. Zhong, D. L.; Zhang, Z. Y.; Ding, L.; Han, J.; **ao, M. M.; Si, J.; Xu, L.; Qiu, C. G.; Peng, L. M. Gigahertz integrated circuits based on carbon nanotube films. Nat. Electron. 2018, 1, 40–45.

    Article  Google Scholar 

  43. Han, S. J.; Tang, J. S.; Kumar, B.; Falk, A.; Farmer, D.; Tulevski, G.; Jenkins, K.; Afzali, A.; Oida, S.; Ott, J. et al. High-speed logic integrated circuits with solution-processed self-assembled carbon nanotubes. Nat. Nanotechnol., 2017, 12, 861–865.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research & Development Program (No. 2016YFA0201901), the National Natural Science Foundation of China (Nos. 61621061, 61427901 and 61888102) and the Bei**g Municipal Science and Technology Commission (No. D171100006617002 1-2).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiyong Zhang or Lianmao Peng.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

**e, Y., Zhang, Z., Zhong, D. et al. Speeding up carbon nanotube integrated circuits through three-dimensional architecture. Nano Res. 12, 1810–1816 (2019). https://doi.org/10.1007/s12274-019-2436-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2436-2

Keywords

Navigation