Log in

Phototriggered targeting of nanocarriers for drug delivery

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Stimuli-triggered targeting of drug delivery systems can both increase the therapeutic efficacy and lower toxicity by selectively delivering drugs at target sites with high specificity and efficiency. Light is a convenient and powerful stimulus for use in such drug delivery systems because it is readily available and noninvasive and offers excellent spatiotemporal control. The power and wavelength of light can be finely tuned for different photoresponsive systems to achieve efficient targeting at the tissue, cellular, or subcellular levels. Here, we have reviewed the various mechanisms for phototriggered targeting (phototargeting) of drug nanocarriers. We have discussed the three main phototargeting strategies: (1) targeting ligand activation; (2) particle size reduction; and (3) blood vessel disruption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Park, K. Controlled drug delivery systems: Past forward and future back. J. Control. Release 2014, 190, 3–8.

    Google Scholar 

  2. Davis, M. E.; Chen, Z.; Shin, D. M. Nanoparticle therapeutics: An emerging treatment modality for cancer. Nat. Rev. Drug Discov. 2008, 7, 771–782.

    Google Scholar 

  3. Helfand, W. H.; Cowen, D. L. Evolution of pharmaceutical oral dosage forms. Pharm. Hist. 1983, 25, 3–18.

    Google Scholar 

  4. Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 2013, 12, 991–1003.

    Google Scholar 

  5. Shi, J. J.; Kantoff, P. W.; Wooster, R.; Farokhzad, O. C. Cancer nanomedicine: Progress, challenges and opportunities. Nat. Rev. Cancer 2017, 17, 20–37.

    Google Scholar 

  6. Maeda, H. Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity. Adv. Drug Deliv. Rev. 2015, 91, 3–6.

    Google Scholar 

  7. Kobayashi, H.; Watanabe, R.; Choyke, P. L. Improving conventional enhanced permeability and retention (EPR) effects; what is the appropriate target? Theranostics 2013, 4, 81–89.

    Google Scholar 

  8. Verhoef, J. J. F.; Anchordoquy, T. J. Questioning the use of PEG ylation for drug delivery. Drug Deliv. Transl. Res. 2013, 3, 499–503.

    Google Scholar 

  9. Yang, Q.; Lai, S. K. Anti-PEG immunity: Emergence, characteristics, and unaddressed questions. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2015, 7, 655–677.

    Google Scholar 

  10. Allen, T. M. Ligand-targeted therapeutics in anticancer therapy. Nat. Rev. Cancer 2002, 2, 750–763.

    Google Scholar 

  11. Mi, Y.; Liu, Y. T.; Feng, S. S. Formulation of docetaxel by folic acid-conjugated D-α-tocopheryl polyethylene glycol succinate 2000 (Vitamin E TPGS2k) micelles for targeted and synergistic chemotherapy. Biomaterials 2011, 32, 4058–4066.

    Google Scholar 

  12. Wang, J.; Liu, Q.; Zhang, Y. T.; Shi, H.; Liu, H.; Guo, W. J.; Ma, Y. H.; Huang, W. Q.; Hong, Z. Y. Folic acidconjugated pyropheophorbide a as the photosensitizer tested for in vivo targeted photodynamic therapy. J. Pharm. Sci. 2017, 106, 1482–1489.

    Google Scholar 

  13. Danhier, F.; Le Breton, A.; Préat, V. RGD-based strategies to target alpha(v) beta(3) integrin in cancer therapy and diagnosis. Mol. Pharm. 2012, 9, 2961–2973.

    Google Scholar 

  14. Sudimack, J.; Lee, R. J. Targeted drug delivery via the folate receptor. Adv. Drug Deliv. Rev. 2000, 41, 147–162.

    Google Scholar 

  15. Wang, M.; Thanou, M. Targeting nanoparticles to cancer. Pharmacol. Res. 2010, 62, 90–99.

    Google Scholar 

  16. Shuhendler, A. J.; Prasad, P.; Leung, M.; Rauth, A. M.; DaCosta, R. S.; Wu, X. Y. A novel solid lipid nanoparticle formulation for active targeting to tumor αvβ3 integrin receptors reveals cyclic RGD as a double-edged sword. Adv. Healthc. Mater. 2012, 1, 600–608.

    Google Scholar 

  17. Dvir, T.; Banghart, M. R.; Timko, B. P.; Langer, R.; Kohane, D. S. Photo-targeted nanoparticles. Nano Lett. 2010, 10, 250–254.

    Google Scholar 

  18. Wang, S.; Huang, P.; Chen, X. Y. Hierarchical targeting strategy for enhanced tumor tissue accumulation/retention and cellular internalization. Adv. Mater. 2016, 28, 7340–7364.

    Google Scholar 

  19. Arrue, L.; Ratjen, L. Internal targeting and external control: Phototriggered targeting in nanomedicine. ChemMedChem 2017, 12, 1908–1916.

    Google Scholar 

  20. Wang, Y. F.; Kohane, D. S. External triggering and triggered targeting strategies for drug delivery. Nat. Rev. Mater. 2017, 2, 17020.

    Google Scholar 

  21. Wang, S.; Huang, P.; Chen, X. Y. Stimuli-responsive programmed specific targeting in nanomedicine. ACS Nano 2016, 10, 2991–2994.

    Google Scholar 

  22. Lee, E. S.; Gao, Z. G.; Kim, D.; Park, K.; Kwon, I. C.; Bae, Y. H. Super pH-sensitive multifunctional polymeric micelle for tumor pHe specific TAT exposure and multidrug resistance. J. Control. Release 2008, 129, 228–236.

    Google Scholar 

  23. Zhan, C. Y.; Wang, W. P.; Santamaria, C.; Wang, B.; Rwei, A.; Timko, B. P.; Kohane, D. S. Ultrasensitive phototriggered local anesthesia. Nano Lett. 2017, 17, 660–665.

    Google Scholar 

  24. Rwei, A. Y.; Paris, J. L.; Wang, B.; Wang, W. P.; Axon, C. D.; Vallet-Regí, M.; Langer, R.; Kohane, D. S. Ultrasound-triggered local anaesthesia. Nat. Biomed. Eng. 2017, 1, 644–653.

    Google Scholar 

  25. Meyer, D. E.; Shin, B. C.; Kong, G. A.; Dewhirst, M. W.; Chilkoti, A. Drug targeting using thermally responsive polymers and local hyperthermia. J. Control. Release 2001, 74, 213–224.

    Google Scholar 

  26. Dugan, A.; Majmudar, C. Y.; Pricer, R.; Niessen, S.; Lancia, J. K.; Fung, H. Y. H.; Cravatt, B. F.; Mapp, A. K. Discovery of enzymatic targets of transcriptional activators via in vivo covalent chemical capture. J. Am. Chem. Soc. 2016, 138, 12629–12635.

    Google Scholar 

  27. Tian, X.; Zhang, L. C.; Yang, M.; Bai, L.; Dai, Y. H.; Yu, Z. Q.; Pan, Y. Functional magnetic hybrid nanomaterials for biomedical diagnosis and treatment. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2018, 10, e1476.

    Google Scholar 

  28. Li, J. J.; Li, Y. F.; Wang, Y. H.; Ke, W. D.; Chen, W. J.; Wang, W. P.; Ge, Z. S. Polymer prodrug-based nanoreactors activated by tumor acidity for orchestrated oxidation/chemotherapy. Nano Lett. 2017, 17, 6983–6990.

    Google Scholar 

  29. Font, J.; López-Cano, M.; Notartomaso, S.; Scarselli, P.; Di Pietro, P.; Bresolí-Obach, R.; Battaglia, G.; Malhaire, F.; Rovira, X.; Catena, J. et al. Optical control of pain in vivo with a photoactive mGlu5 receptor negative allosteric modulator. eLife 2017, 6, e23545.

    Google Scholar 

  30. Lv, W.; Zhang, Z.; Zhang, K. Y.; Yang, H. R.; Liu, S. J.; Xu, A. Q.; Guo, S.; Zhao, Q.; Huang, W. A mitochondriatargeted photosensitizer showing improved photodynamic therapy effects under hypoxia. Angew. Chem., Int. Ed. 2016, 55, 9947–9951.

    Google Scholar 

  31. Jaque, D.; Martínez Maestro, L.; del Rosal, B.; Haro-Gonzalez, P.; Benayas, A.; Plaza, J. L.; Martin Rodríguez, E.; García Solé, J. Nanoparticles for photothermal therapies. Nanoscale 2014, 6, 9494–9530.

    Google Scholar 

  32. Yu, H. T.; Li, J. B.; Wu, D. D.; Qiu, Z. J.; Zhang, Y. Chemistry and biological applications of photo-labile organic molecules. Chem. Soc. Rev. 2010, 39, 464–473.

    Google Scholar 

  33. Fomina, N.; Sankaranarayanan, J.; Almutairi, A. Photochemical mechanisms of light-triggered release from nanocarriers. Adv. Drug Deliv. Rev. 2012, 64, 1005–1020.

    Google Scholar 

  34. Gohy, J. F.; Zhao, Y. Photo-responsive block copolymer micelles: Design and behavior. Chem. Soc. Rev. 2013, 42, 7117–7129.

    Google Scholar 

  35. Barhoumi, A.; Liu, Q.; Kohane, D. S. Ultraviolet lightmediated drug delivery: Principles, applications, and challenges. J. Control. Release 2015, 219, 31–42.

    Google Scholar 

  36. Shanmugam, V.; Selvakumar, S.; Yeh, C. S. Near-infrared light-responsive nanomaterials in cancer therapeutics. Chem. Soc. Rev. 2014, 43, 6254–6287.

    Google Scholar 

  37. Rwei, A. Y.; Wang, W. P.; Kohane, D. S. Photoresponsive nanoparticles for drug delivery. Nano Today 2015, 10, 451–467.

    Google Scholar 

  38. Wang, W. P.; Liu, Q.; Zhan, C. Y.; Barhoumi, A.; Yang, T. S.; Wylie, R. G.; Armstrong, P. A.; Kohane, D. S. Efficient triplet-triplet annihilation-based upconversion for nanoparticle phototargeting. Nano Lett. 2015, 15, 6332–6338.

    Google Scholar 

  39. Tong, R.; Hemmati, H. D.; Langer, R.; Kohane, D. S. Photoswitchable nanoparticles for triggered tissue penetration and drug delivery. J. Am. Chem. Soc. 2012, 134, 8848–8855.

    Google Scholar 

  40. Sano, K.; Nakajima, T.; Choyke, P. L.; Kobayashi, H. Markedly enhanced permeability and retention effects induced by photo-immunotherapy of tumors. ACS Nano 2013, 7, 717–724.

    Google Scholar 

  41. Gormley, A. J.; Larson, N.; Sadekar, S.; Robinson, R.; Ray, A.; Ghandehari, H. Guided delivery of polymer therapeutics using plasmonic photothermal therapy. Nano Today 2012, 7, 158–167.

    Google Scholar 

  42. Klán, P.; Šolomek, T.; Bochet, C. G.; Blanc, A.; Givens, R.; Rubina, M.; Popik, V.; Kostikov, A.; Wirz, J. Photoremovable protecting groups in chemistry and biology: Reaction mechanisms and efficacy. Chem. Rev. 2013, 113, 119–191.

    Google Scholar 

  43. Han, G.; Mokari, T.; Ajo-Franklin, C.; Cohen, B. E. Caged quantum dots. J. Am. Chem. Soc. 2008, 130, 15811–15813.

    Google Scholar 

  44. Han, G.; You, C. C.; Kim, B. J.; Turingan, R. S.; Forbes, N. S.; Martin, C. T.; Rotello, V. M. Light-regulated release of DNA and its delivery to nuclei by means of photolabile gold nanoparticles. Angew. Chem., Int. Ed. 2006, 118, 3237–3241.

    Google Scholar 

  45. Lin, Q. N.; Huang, Q.; Li, C. Y.; Bao, C. Y.; Liu, Z. Z.; Li, F. Y.; Zhu, L. Y. Anticancer drug release from a mesoporous silica based nanophotocage regulated by either a one-or two-photon process. J. Am. Chem. Soc. 2010, 132, 10645–10647.

    Google Scholar 

  46. Lin, Q. N.; Bao, C. Y.; Cheng, S. Y.; Yang, Y. L.; Ji, W.; Zhu, L. Y. Target-activated coumarin phototriggers specifically switch on fluorescence and photocleavage upon bonding to thiol-bearing protein. J. Am. Chem. Soc. 2012, 134, 5052–5055.

    Google Scholar 

  47. Fan, N. C.; Cheng, F. Y.; Ho, J. A. A.; Yeh, C. S. Photocontrolled targeted drug delivery: Photocaged biologically active folic acid as a light-responsive tumor-targeting molecule. Angew. Chem., Int. Ed. 2012, 51, 8806–8810.

    Google Scholar 

  48. Yang, R.; Wei, T.; Goldberg, H.; Wang, W. P.; Cullion, K.; Kohane, D. S. Getting drugs across biological barriers. Adv. Mater. 2017, 29, 1606596.

    Google Scholar 

  49. Yang, Y.; Yang, Y. F.; **e, X. Y.; Cai, X. S.; Mei, X. G. Preparation and characterization of photo-responsive cellpenetrating peptide-mediated nanostructured lipid carrier. J. Drug Target. 2014, 22, 891–900.

    Google Scholar 

  50. Shamay, Y.; Adar, L.; Ashkenasy, G.; David, A. Light induced drug delivery into cancer cells. Biomaterials 2011, 32, 1377–1386.

    Google Scholar 

  51. Weissleder, R. A clearer vision for in vivo imaging. Nat. Biotechnol. 2001, 19, 316–317.

    Google Scholar 

  52. Fournier, L.; Gauron, C.; Xu, L. J.; Aujard, I.; Le Saux, T.; Gagey-Eilstein, N.; Maurin, S.; Dubruille, S.; Baudin, J. B.; Bensimon, D. et al. A blue-absorbing photolabile protecting group for in vivo chromatically orthogonal photoactivation. ACS Chem. Biol. 2013, 8, 1528–1536.

    Google Scholar 

  53. Herzig, L. M.; Elamri, I.; Schwalbe, H.; Wachtveitl, J. Light-induced antibiotic release from a coumarin-caged compound on the ultrafast timescale. Phys. Chem. Chem. Phys. 2017, 19, 14835–14844.

    Google Scholar 

  54. Pavlovic, I.; Thakor, D. T.; Vargas, J. R.; McKinlay, C. J.; Hauke, S.; Anstaett, P.; Camuna, R. C.; Bigler, L.; Gasser, G.; Schultz, C. et al. Cellular delivery and photochemical release of a caged inositol-pyrophosphate induces pH-domain translocation in cellulo. Nat. Commun. 2016, 7, 10622.

    Google Scholar 

  55. Olson, J. P.; Kwon, H. B.; Takasaki, K. T.; Chiu, C. Q.; Higley, M. J.; Sabatini, B. L.; Ellis-Davies, G. C. R. Optically selective two-photon uncaging of glutamate at 900 nm. J. Am. Chem. Soc. 2013, 135, 5954–5957.

    Google Scholar 

  56. Bochet, C. G. Photolabile protecting groups and linkers. J. Chem. Soc., Perkin Trans. 1 2002, 125–142.

    Google Scholar 

  57. **e, X. Y.; Yang, Y. F.; Yang, Y.; Mei, X. G. Photolabilecaged peptide-conjugated liposomes for siRNA delivery. J. Drug Target. 2015, 23, 789–799.

    Google Scholar 

  58. Yang, Y. F.; **e, X. Y.; Yang, Y.; Zhang, H.; Mei, X. G. Photo-responsive and NGR-mediated multifunctional nanostructured lipid carrier for tumor-specific therapy. J. Pharm. Sci. 2015, 104, 1328–1339.

    Google Scholar 

  59. Yang, Y.; Yang, Y. F.; **e, X. Y.; Cai, X. S.; Wang, Z. Y.; Gong, W.; Zhang, H.; Li, Y.; Mei, X. G. A near-infrared two-photon-sensitive peptide-mediated liposomal delivery system. Colloids Surf. B 2015, 128, 427–438.

    Google Scholar 

  60. Yang, Y.; Yang, Y. F.; **e, X. Y.; Wang, Z. Y.; Gong, W.; Zhang, H.; Li, Y.; Yu, F. L.; Li, Z. P.; Mei, X. G. Dual-modified liposomes with a two-photon-sensitive cell penetrating peptide and NGR ligand for siRNA targeting delivery. Biomaterials 2015, 48, 84–96.

    Google Scholar 

  61. **e, X. Y.; Yang, Y. F.; Yang, Y.; Zhang, H.; Li, Y.; Mei, X. G. A photo-responsive peptide-and asparagine–glycine–arginine (NGR) peptide-mediated liposomal delivery system. Drug Deliv. 2016, 23, 2445–2456.

    Google Scholar 

  62. Helmchen, F.; Denk, W. Deep tissue two-photon microscopy. Nat. Methods 2005, 2, 932–940.

    Google Scholar 

  63. Gu, M.; Gan, X. S.; Kisteman, A.; Xu, M. G. Comparison of penetration depth between two-photon excitation and single-photon excitation in imaging through turbid tissue media. Appl. Phys. Lett. 2000, 77, 1551–1553.

    Google Scholar 

  64. Shen, J.; Chen, G. Y.; Ohulchanskyy, T. Y.; Kesseli, S. J.; Buchholz, S.; Li, Z. P.; Prasad, P. N.; Han, G. Tunable near infrared to ultraviolet upconversion luminescence enhancement in (α-NaYF4:Yb,Tm)/CaF2 core/shell nanoparticles for in situ real-time recorded biocompatible photoactivation. Small 2013, 9, 3213–3217.

    Google Scholar 

  65. Zhao, L. Z.; Peng, J. J.; Huang, Q.; Li, C. Y.; Chen, M.; Sun, Y.; Lin, Q. N.; Zhu, L. Y.; Li, F. Y. Near-infrared photoregulated drug release in living tumor tissue via yolkshell upconversion nanocages. Adv. Funct. Mater. 2014, 24, 363–371.

    Google Scholar 

  66. Askes, S. H. C.; Bahreman, A.; Bonnet, S. Activation of a photodissociative ruthenium complex by triplet-triplet annihilation upconversion in liposomes. Angew. Chem., Int. Ed. 2014, 53, 1029–1033.

    Google Scholar 

  67. Chien, Y. H.; Chou, Y. L.; Wang, S. W.; Hung, S. T.; Liau, M. C.; Chao, Y. J.; Su, C. H.; Yeh, C. S. Near-infrared light photocontrolled targeting, bioimaging, and chemotherapy with caged upconversion nanoparticles in vitro and in vivo. ACS Nano 2013, 7, 8516–8528.

    Google Scholar 

  68. Hansen, M. B.; van Gaal, E.; Minten, I.; Storm, G.; van Hest, J. C. M.; Löwik, D. W. P. M. Constrained and UV-activatable cell-penetrating peptides for intracellular delivery of liposomes. J. Control. Release 2012, 164, 87–94.

    Google Scholar 

  69. Yuan, Z. F.; Zhao, D.; Yi, X. Q.; Zhuo, R. X.; Li, F. Steric protected and illumination-activated tumor targeting accessory for endowing drug-delivery systems with tumor selectivity. Adv. Funct. Mater. 2014, 24, 1799–1807.

    Google Scholar 

  70. Liu, Q.; Wang, W. P.; Zhan, C. Y.; Yang, T. S.; Kohane, D. S. Enhanced precision of nanoparticle phototargeting in vivo at a safe irradiance. Nano Lett. 2016, 16, 4516–4520.

    Google Scholar 

  71. Yang, Y.; **e, X. Y.; Yang, Y. F.; Li, Z. P.; Yu, F. L.; Gong, W.; Li, Y.; Zhang, H.; Wang, Z. Y.; Mei, X. G. Polymer nanoparticles modified with photo-and pH-dual-responsive polypeptides for enhanced and targeted cancer therapy. Mol. Pharm. 2016, 13, 1508–1519.

    Google Scholar 

  72. Wang, J.; Shen, H. J.; Huang, C.; Ma, Q. Q.; Tan, Y. N.; Jiang, F. L.; Ma, C.; Yuan, Q. Highly efficient and multidimensional extraction of targets from complex matrices using aptamerdriven recognition. Nano Res. 2017, 10, 145–156.

    Google Scholar 

  73. Li, L. L.; Tong, R.; Chu, H. H.; Wang, W. P.; Langer, R.; Kohane, D. S. Aptamer photoregulation in vivo. Proc. Natl. Acad. Sci. USA 2014, 111, 17099–17103.

    Google Scholar 

  74. Yang, Y.; Liu, J. J.; Sun, X. Q.; Feng, L. Z.; Zhu, W. W.; Liu, Z.; Chen, M. W. Near-infrared light-activated cancer cell targeting and drug delivery with aptamer-modified nanostructures. Nano Res. 2016, 9, 139–148.

    Google Scholar 

  75. Barhoumi, A.; Wang, W. P.; Zurakowski, D.; Langer, R. S.; Kohane, D. S. Photothermally targeted thermosensitive polymer-masked nanoparticles. Nano Lett. 2014, 14, 3697–3701.

    Google Scholar 

  76. Li, J.; Sun, C. Y.; Tao, W.; Cao, Z. Y.; Qian, H. S.; Yang, X. Z.; Wang, J. Photoinduced PEG deshielding from ROSsensitive linkage-bridged block copolymer-based nanocarriers for on-demand drug delivery. Biomaterials 2018, 170, 147–155.

    Google Scholar 

  77. He, C. B.; Hu, Y. P.; Yin, L. C.; Tang, C.; Yin, C. H. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials 2010, 31, 3657–3666.

    Google Scholar 

  78. Cabral, H.; Matsumoto, Y.; Mizuno, K.; Chen, Q.; Murakami, M.; Kimura, M.; Terada, Y.; Kano, M. R.; Miyazono, K.; Uesaka, M. et al. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat. Nanotechnol. 2011, 6, 815–823.

    Google Scholar 

  79. Tong, R.; Chiang, H. H.; Kohane, D. S. Photoswitchable nanoparticles for in vivo cancer chemotherapy. Proc. Natl. Acad. Sci. USA 2013, 110, 19048–19053.

    Google Scholar 

  80. Tacar, O.; Sriamornsak, P.; Dass, C. R. Doxorubicin: An update on anticancer molecular action, toxicity and novel drug delivery systems. J. Pharm. Pharmacol. 2013, 65, 157–170.

    Google Scholar 

  81. Qiu, L. P.; Chen, T.; Öçsoy, I.; Yasun, E.; Wu, C. C.; Zhu, G. Z.; You, M. X.; Han, D.; Jiang, J. H.; Yu, R. Q. et al. A cell-targeted, size-photocontrollable, nuclear-uptake nanodrug delivery system for drug-resistant cancer therapy. Nano Lett. 2015, 15, 457–463.

    Google Scholar 

  82. Ojha, T.; Pathak, V.; Shi, Y.; Hennink, W. E.; Moonen, C. T. W.; Storm, G.; Kiessling, F.; Lammers, T. Pharmacological and physical vessel modulation strategies to improve EPRmediated drug targeting to tumors. Adv. Drug Deliv. Rev. 2017, 119, 44–60.

    Google Scholar 

  83. Dougherty, T. J.; Gomer, C. J.; Henderson, B. W.; Jori, G.; Kessel, D.; Korbelik, M.; Moan, J.; Peng, Q. Photodynamic therapy. J. Natl. Cancer Int. 1998, 90, 889–905.

    Google Scholar 

  84. Zhen, Z. P.; Tang, W.; Chuang, Y. J.; Todd, T.; Zhang, W. Z.; Lin, X.; Niu, G.; Liu, G.; Wang, L. C.; Pan, Z. W. et al. Tumor vasculature targeted photodynamic therapy for enhanced delivery of nanoparticles. ACS Nano 2014, 8, 6004–6013.

    Google Scholar 

  85. Gao, W. D.; Wang, Z. H.; Lv, L. W.; Yin, D. Y.; Chen, D.; Han, Z. H.; Ma, Y.; Zhang, M.; Yang, M.; Gu, Y. Q. Photodynamic therapy induced enhancement of tumor vasculature permeability using an upconversion nanoconstruct for improved intratumoral nanoparticle delivery in deep tissues. Theranostics 2016, 6, 1131–1144.

    Google Scholar 

  86. Mitsunaga, M.; Ogawa, M.; Kosaka, N.; Rosenblum, L. T.; Choyke, P. L.; Kobayashi, H. Cancer cell-selective in vivo near infrared photoimmunotherapy targeting specific membrane molecules. Nat. Med. 2011, 17, 1685–1691.

    Google Scholar 

  87. Kong, G.; Braun, R. D.; Dewhirst, M. W. Characterization of the effect of hyperthermia on nanoparticle extravasation from tumor vasculature. Cancer Res. 2001, 61, 3027–3032.

    Google Scholar 

  88. Gormley, A. J.; Larson, N.; Banisadr, A.; Robinson, R.; Frazier, N.; Ray, A.; Ghandehari, H. Plasmonic photothermal therapy increases the tumor mass penetration of HPMA copolymers. J. Control. Release 2013, 166, 130–138.

    Google Scholar 

  89. Frazier, N.; Robinson, R.; Ray, A.; Ghandehari, H. Effects of heating temperature and duration by gold nanorod mediated plasmonic photothermal therapy on copolymer accumulation in tumor tissue. Mol. Pharm. 2015, 12, 1605–1614.

    Google Scholar 

  90. Velema, W. A.; Szymanski, W.; Feringa, B. L. Photopharmacology: Beyond proof of principle. J. Am. Chem. Soc. 2014, 136, 2178–2191.

    Google Scholar 

  91. Lal, S.; Clare, S. E.; Halas, N. J. Nanoshell-enabled photothermal cancer therapy: Impending clinical impact. Acc. Chem. Res. 2008, 41, 1842–1851.

    Google Scholar 

  92. Yang, Y. M.; Mu, J.; **ng, B. G. Photoactivated drug delivery and bioimaging. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2017, 9, e1408.

    Google Scholar 

  93. Fournier, L.; Aujard, I.; Le Saux, T.; Maurin, S.; Beaupierre, S.; Baudin, J. B.; Jullien, L. Coumarinylmethyl caging groups with redshifted absorption. Chem.—Eur. J. 2013, 19, 17494–17507.

    Google Scholar 

  94. Gandioso, A.; Cano, M.; Massaguer, A.; Marchán, V. A green light-triggerable RGD peptide for photocontrolled targeted drug delivery: Synthesis and photolysis studies. J. Org. Chem. 2016, 81, 11556–11564.

    Google Scholar 

  95. Huang, L.; Zhao, Y.; Zhang, H.; Huang, K.; Yang, J. Y.; Han, G. Expanding anti-stokes shifting in triplet-triplet annihilation upconversion for in vivo anticancer prodrug activation. Angew. Chem., Int. Ed. 2017, 56, 14400–14404.

    Google Scholar 

  96. Liu, X. S.; Chen, Y. J.; Li, H.; Huang, N.; **, Q.; Ren, K. F.; Ji, J. Enhanced retention and cellular uptake of nanoparticles in tumors by controlling their aggregation behavior. ACS Nano 2013, 7, 6244–6257.

    Google Scholar 

  97. Shiraishi, Y.; Tanaka, K.; Shirakawa, E.; Sugano, Y.; Ichikawa, S.; Tanaka, S.; Hirai, T. Light-triggered selfassembly of gold nanoparticles based on photoisomerization of spirothiopyran. Angew. Chem., Int. Ed. 2013, 52, 8304–8308.

    Google Scholar 

  98. Au, K. M.; Chen, M.; Armes, S. P.; Zheng, N. F. Near-infrared light-triggered irreversible aggregation of poly(oligo(ethylene glycol) methacrylate)-stabilised polypyrrole nanoparticles under biologically relevant conditions. Chem. Commun. 2013, 49, 10525–10527.

    Google Scholar 

  99. Klinger, D.; Landfester, K. Photo-sensitive pmma microgels: Light-triggered swelling and degradation. Soft Matter 2011, 7, 1426–1440.

    Google Scholar 

  100. **ng, P. Y.; Chen, H. Z.; Bai, L. Y.; Zhao, Y. L. Phototriggered transformation from vesicles to branched nanotubes fabricated by a cholesterol-appended cyanostilbene. Chem. Commun. 2015, 51, 9309–9312.

    Google Scholar 

  101. Li, D. D.; Ma, Y. C.; Du, J. Z.; Tao, W.; Du, X. J.; Yang, X. Z.; Wang, J. Tumor acidity/NIR controlled interaction of transformable nanoparticle with biological systems for cancer therapy. Nano Lett. 2017, 17, 2871–2878.

    Google Scholar 

  102. Lin, Q. N.; Bao, C. Y.; Yang, Y. L.; Liang, Q. N.; Zhang, D. S.; Cheng, S. Y.; Zhu, L. Y. Highly discriminating photorelease of anticancer drugs based on hypoxia activatable phototrigger conjugated chitosan nanoparticles. Adv. Mater. 2013, 25, 1981–1986.

    Google Scholar 

  103. Lv, W.; Yang, T. S.; Yu, Q.; Zhao, Q.; Zhang, K. Y.; Liang, H.; Liu, S. J.; Li, F. Y.; Huang, W. A phosphorescent iridium(III) complex-modified nanoprobe for hypoxia bioimaging via time-resolved luminescence microscopy. Adv. Sci. 2015, 2, 1500107.

    Google Scholar 

  104. Tran, S.; DeGiovanni, P. J.; Piel, B.; Rai, P. Cancer nanomedicine: A review of recent success in drug delivery. Clin. Transl. Med. 2017, 6, 44.

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support from Dr. Li Dak-Sum Research Fund (Start-up Fund) of The University of Hong Kong and Seed Fund for Basic Research of The University of Hong Kong (Nos. 201704159010 and 201711159053).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei** Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Zhang, Y. & Wang, W. Phototriggered targeting of nanocarriers for drug delivery. Nano Res. 11, 5424–5438 (2018). https://doi.org/10.1007/s12274-018-2132-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2132-7

Keywords

Navigation