Log in

Remarkably enhanced water splitting activity of nickel foam due to simple immersion in a ferric nitrate solution

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The development of a facile method to construct a high-performance electrode is of paramount importance to the application of alkaline water electrolysis. Here, we report that the activity of nickel foam (NF) towards the oxygen evolution reaction (OER) can be enhanced remarkably through simple immersion in a ferric nitrate (Fe(NO3)3) solution at room temperature. During this immersion process, the oxidation of the NF surface by NO3 ions increases the near-surface concentrations of OH and Ni2+, which results in the in situ deposition of a highly active amorphous Ni-Fe hydroxide (a-NiFeOxHy) layer. Specifically, the OER overpotential of the NF electrode decreases from 371 mV (bare NF) to 270 mV (@10 mA·cm−2 in 0.1 M KOH) after immersion in a 20 mM Fe(NO3)3 solution for just 1 min. A longer immersion time results in further increased OER activity (196 mV@10 mA·cm−2 in 1 M KOH). The overall water splitting properties of the a-NiFeOxHy@NF electrode were evaluated using a two-electrode configuration. It is worth noting that the current density can reach 25 mA·cm−2 in 6 M KOH at an applied voltage of 1.5 V at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zeng, K.; Zhang, D. K. Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog. Energy Combust. Sci. 2010, 36, 307–326.

    Article  Google Scholar 

  2. Yang, Z. G.; Zhang, J. L.; Kintner-Meyer, M. C. W.; Lu, X. C.; Choi, D.; Lemmon, J. P.; Liu, J. Electrochemical energy storage for green grid. Chem. Rev. 2011, 111, 3577–3613.

    Article  Google Scholar 

  3. Gu, S.; Xu, B. J.; Yan, Y. S. Electrochemical energy engineering: A new frontier of chemical engineering innovation. Annu. Rev. Chem. Biomol. Eng. 2014, 5, 429–454.

    Article  Google Scholar 

  4. Luo, J. S.; Im, J. H.; Mayer, M. T.; Schreier, M.; Nazeeruddin, M. K.; Park, N. G.; Tilley, S. D.; Fan, H. J.; Grätzel, M. Water photolysis at 12.3% efficiency via perovskite photovoltaics and earth-abundant catalysts. Science 2014, 345, 1593–1596.

    Article  Google Scholar 

  5. Abdin, Z.; Webb, C. J.; Gray, E. M. Solar hydrogen hybrid energy systems for off-grid electricity supply: A critical review. Renew. Sustain. Energy Rev. 2015, 52, 1791–1808.

    Article  Google Scholar 

  6. Stamenkovic, V. R.; Strmcnik, D.; Lopes, P. P.; Markovic, N. M. Energy and fuels from electrochemical interfaces. Nat. Mater. 2017, 16, 57–69.

    Article  Google Scholar 

  7. Rossmeisl, J.; Qu, Z.-W.; Zhu, H.; Kroes, G.-J.; Nørskov, J. K. Electrolysis of water on oxide surfaces. J. Electroanal. Chem. 2007, 607, 83–89.

    Article  Google Scholar 

  8. Suntivich, J.; May, K. J.; Gasteiger, H. A.; Goodenough, J. B.; Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 2011, 334, 1383–1385.

    Article  Google Scholar 

  9. Smith, R. D. L.; Prévot, M. S.; Fagan, R. D.; Zhang, Z.; Sedach, P. A.; Siu, M. K. J.; Trudel, S.; Berlinguette, C. P. Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis. Science 2013, 340, 60–63.

    Article  Google Scholar 

  10. Zhang, B.; Zheng, X. L.; Voznyy, O.; Comin, R.; Bajdich, M.; García-Melchor, M.; Han, L. L.; Xu, J. X.; Liu, M.; Zheng, L. et al. Homogeneously dispersed multimetal oxygenevolving catalysts. Science 2016, 352, 333–337.

    Article  Google Scholar 

  11. Zhao, S. L.; Wang, Y.; Dong, J. C.; He, C.-T.; Yin, H. J.; An, P. F.; Zhao, K.; Zhang, X. F.; Gao, C.; Zhang, L. J. et al. Ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution. Nat. Energy 2016, 1, 16184.

    Article  Google Scholar 

  12. Kanan, M. W.; Nocera, D. G. In situ formation of an oxygenevolving catalyst in neutral water containing phosphate and Co2+. Science 2008, 321, 1072–1075.

    Article  Google Scholar 

  13. Chen, D. J.; Chen, C.; Baiyee, Z. M.; Shao, Z. P.; Ciucci, F. Nonstoichiometric oxides as low-cost and highly-efficient oxygen reduction/evolution catalysts for low-temperature electrochemical devices. Chem. Rev. 2015, 115, 9869–9921.

    Article  Google Scholar 

  14. Hong, W. T.; Risch, M.; Stoerzinger, K. A.; Grimaud, A.; Suntivich, J.; Shao-Horn, Y. Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis. Energy Environ. Sci. 2015, 8, 1404–1427.

    Article  Google Scholar 

  15. Burke, M. S.; Enman, L. J.; Batchellor, A. S.; Zou, S. H.; Boettcher, S. W. Oxygen evolution reaction electrocatalysis on transition metal oxides and (oxy)hydroxides: Activity trends and design principles. Chem. Mater. 2015, 27, 7549–7558.

    Article  Google Scholar 

  16. Gong, M.; Dai, H. J. A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts. Nano Res. 2015, 8, 23–39.

    Article  Google Scholar 

  17. McCrory, C. C. L.; Jung, S.; Ferrer, I. M.; Chatman, S. M.; Peters, J. C.; Jaramillo, T. F. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J. Am. Chem. Soc. 2015, 137, 4347–4357.

    Article  Google Scholar 

  18. Han, L.; Dong, S. J.; Wang, E. K. Transition-metal (Co, Ni, and Fe)-based electrocatalysts for the water oxidation reaction. Adv. Mater. 2016, 28, 9266–9291.

    Article  Google Scholar 

  19. Montoya, J. H.; Seitz, L. C.; Chakthranont, P.; Vojvodic, A.; Jaramillo, T. F.; Nørskov, J. K. Materials for solar fuels and chemicals. Nat. Mater. 2017, 16, 70–81.

    Article  Google Scholar 

  20. Beni, G.; Schiavone, L. M.; Shay, J. L.; Dautremont-Smith, W. C.; Schneider, B. S. Electrocatalytic oxygen evolution on reactively sputtered electrochromic iridium oxide films. Nature 1979, 282, 281–283.

    Article  Google Scholar 

  21. Wang, W. J.; Li, H. L.; Kang, G. H.; Huang, J. Z.; Xu, Z. Detailed analysis of factors to influence the electrochemical behaviors of Fe:NiOxFe:NiOx films fabricated by magnetron sputtering technology. Int. J. Hydrogen Energy 2006, 31, 1791–1796.

    Article  Google Scholar 

  22. Liang, Y. Y.; Li, Y. G.; Wang, H. L.; Zhou, J. G.; Wang, J.; Regier, T.; Dai, H. J. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 2011, 10, 780–786.

    Article  Google Scholar 

  23. Trotochaud, L.; Ranney, J. K.; Williams, K. N.; Boettcher, S. W. Solution-cast metal oxide thin film electrocatalysts for oxygen evolution. J. Am. Chem. Soc. 2012, 134, 17253–17261.

    Article  Google Scholar 

  24. Smith, R. D. L.; Prévot, M. S.; Fagan, R. D.; Trudel, S.; Berlinguette, C. P. Water oxidation catalysis: Electrocatalytic response to metal stoichiometry in amorphous metal oxide films containing iron, cobalt, and nickel. J. Am. Chem. Soc. 2013, 135, 11580–11586.

    Article  Google Scholar 

  25. Zhao, Y.; Nakamura, R.; Kamiya, K.; Nakanishi, S.; Hashimoto, K. Nitrogen-doped carbon nanomaterials as non-metal electrocatalysts for water oxidation. Nat. Commun. 2013, 4, 2390.

    Article  Google Scholar 

  26. Gong, M.; Li, Y. G.; Wang, H. L.; Liang, Y. Y.; Wu, J. Z.; Zhou, J. G.; Wang, J.; Regier, T.; Wei, F.; Dai, H. J. An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation. J. Am. Chem. Soc. 2013, 135, 8452–8455.

    Article  Google Scholar 

  27. Hunter, B. M.; Blakemore, J. D.; Deimund, M.; Gray, H. B.; Winkler, J. R.; Müller, A. M. Highly active mixed-metal nanosheet water oxidation catalysts made by pulsed-laser ablation in liquids. J. Am. Chem. Soc. 2014, 136, 13118–13121.

    Article  Google Scholar 

  28. Song, F.; Hu, X. L. Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nat. Commun. 2014, 5, 4477.

    Article  Google Scholar 

  29. Song, F.; Schenk, K.; Hu, X. L. A nanoporous oxygen evolution catalyst synthesized by selective electrochemical etching of perovskite hydroxide CoSn(OH)6 nanocubes. Energy Environ. Sci. 2016, 9, 473–477.

    Article  Google Scholar 

  30. Castro, E. B.; Gervasi, C. A. Electrodeposited Ni-Co-oxide electrodes: Characterization and kinetics of the oxygen evolution reaction. Int. J. Hydrogen Energy 2000, 25, 1163–1170.

    Article  Google Scholar 

  31. Chi, B.; Li, J. B.; Yang, X. Z.; Lin, H.; Wang, N. Electrophoretic deposition of ZnCo2O4 spinel and its electrocatalytic properties for oxygen evolution reaction. Electrochim. Acta 2005, 50, 2059–2064.

    Article  Google Scholar 

  32. Yeo, B. S.; Bell, A. T. Enhanced activity of gold-supported cobalt oxide for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 2011, 133, 5587–5593.

    Article  Google Scholar 

  33. Louie, M. W.; Bell, A. T. An investigation of thin-film Ni–Fe oxide catalysts for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 2013, 135, 12329–12337.

    Article  Google Scholar 

  34. Burke, M. S.; Kast, M. G.; Trotochaud, L.; Smith, A. M.; Boettcher, S. W. Cobalt-iron (oxy)hydroxide oxygen evolution electrocatalysts: The role of structure and composition on activity, stability, and mechanism. J. Am. Chem. Soc. 2015, 137, 3638–3648.

    Article  Google Scholar 

  35. Lu, X. Y.; Zhao, C. Electrodeposition of hierarchically structured three-dimensional nickel-iron electrodes for efficient oxygen evolution at high current densities. Nat. Commun. 2015, 6, 6616.

    Article  Google Scholar 

  36. Ng, J. W. D.; García-Melchor, M.; Bajdich, M.; Chakthranont, P.; Kirk, C.; Vojvodic, A.; Jaramillo, T. F. Gold-supported cerium-doped NiOx catalysts for water oxidation. Nat. Energy 2016, 1, 16053.

    Article  Google Scholar 

  37. Li, Y. G.; Hasin, P.; Wu, Y. Y. NixCo3–xO4 nanowire arrays for electrocatalytic oxygen evolution. Adv. Mater. 2010, 22, 1926–1929.

    Article  Google Scholar 

  38. Zhou, W. J.; Cao, X. H.; Zeng, Z. Y.; Shi, W. H.; Zhu, Y. Y.; Yan, Q. Y.; Liu, H.; Wang, J. Y.; Zhang, H. One-step synthesis of Ni3S2 nanorod@Ni(OH)2 nanosheet core–shell nanostructures on a three-dimensional graphene network for high-performance supercapacitors. Energy Environ. Sci. 2013, 6, 2216–2221.

    Article  Google Scholar 

  39. Wang, H.-Y.; Hsu, Y.-Y.; Chen, R.; Chan, T.-S.; Chen, H. M.; Liu, B. Ni3+-induced formation of active NiOOH on the spinel Ni-Co oxide surface for efficient oxygen evolution reaction. Adv. Energy Mater. 2015, 5, 1500091.

    Article  Google Scholar 

  40. Chen, S.; Duan, J. J.; Bian, P. J.; Tang, Y. H.; Zheng, R. K.; Qiao, S. Z. Three-dimensional smart catalyst electrode for oxygen evolution reaction. Adv. Energy Mater. 2015, 5, 1500936.

    Article  Google Scholar 

  41. Jiang, J.; Zhang, A. L.; Li, L. L.; Ai, L. H. Nickel-cobalt layered double hydroxide nanosheets as high-performance electrocatalyst for oxygen evolution reaction. J. Power Sources 2015, 278, 445–451.

    Article  Google Scholar 

  42. Feng, L. L.; Yu, G. T.; Wu, Y. Y.; Li, G. D.; Li, H.; Sun, Y. H.; Asefa, T.; Chen, W.; Zou, X. X. High-index faceted Ni3S2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting. J. Am. Chem. Soc. 2015, 137, 14023–14026.

    Article  Google Scholar 

  43. Ma, T. Y.; Dai, S.; Jaroniec, M.; Qiao, S. Z. Metal-organic framework derived hybrid Co3O4-carbon porous nanowire arrays as reversible oxygen evolution electrodes. J. Am. Chem. Soc. 2014, 136, 13925–13931.

    Article  Google Scholar 

  44. Li, S. W.; Wang, Y. C.; Peng, S. J.; Zhang, L. J.; Al-Enizi, A. M.; Zhang, H.; Sun, X. H.; Zheng, G. F. Co-Ni-based nanotubes/nanosheets as efficient water splitting electrocatalysts. Adv. Energy Mater. 2015, 6, 1501661.

    Article  Google Scholar 

  45. Feng, J. X.; Xu, H.; Dong, Y. T.; Ye, S. H.; Tong, Y. X.; Li, G. R. FeOOH/Co/FeOOH hybrid nanotube arrays as highperformance electrocatalysts for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2016, 55, 3694–3698.

    Article  Google Scholar 

  46. Sun, T. T.; Xu, L. B.; Yan, Y. S.; Zakhidov, A. A.; Baughman, R. H.; Chen, J. F. Ordered mesoporous nickel sphere arrays for highly efficient electrocatalytic water oxidation. ACS Catal. 2016, 6, 1446–1450.

    Article  Google Scholar 

  47. Ahn, H. S.; Bard, A. J. Surface interrogation scanning electrochemical microscopy of Ni1–xFexOOH (0 < x < 0.27) oxygen evolving catalyst: Kinetics of the “fast” iron sites. J. Am. Chem. Soc. 2016, 138, 313–318.

    Article  Google Scholar 

  48. Diaz-Morales, O.; Ledezma-Yanez, I.; Koper, M. T. M.; Calle-Vallejo, F. Guidelines for the rational design of Ni-based double hydroxide electrocatalysts for the oxygen evolution reaction. ACS Catal. 2015, 5, 5380–5387.

    Article  Google Scholar 

  49. Friebel, D.; Louie, M. W.; Bajdich, M.; Sanwald, K. E.; Cai, Y.; Wise, A. M.; Cheng, M.-J.; Sokaras, D.; Weng, T.-C.; Alonso-Mori, R. et al. Identification of highly active Fe sites in (Ni, Fe)OOH for electrocatalytic water splitting. J. Am. Chem. Soc. 2015, 137, 1305–1313.

    Article  Google Scholar 

  50. Michael, J. D.; Demeter, E. L.; Illes, S. M.; Fan, Q. Q.; Boes, J. R.; Kitchin, J. R. Alkaline electrolyte and Fe impurity effects on the performance and active-phase structure of NiOOH thin films for OER catalysis applications. J. Phys. Chem. C 2015, 119, 11475–11481.

    Article  Google Scholar 

  51. Trześniewski, B. J.; Diaz-Morales, O.; Vermaas, D. A.; Longo, A.; Bras, W.; Koper, M. T. M.; Smith, W. A. In situ observation of active oxygen species in Fe-containing Ni-based oxygen evolution catalysts: The effect of pH on electrochemical activity. J. Am. Chem. Soc. 2015, 137, 15112–15121.

    Article  Google Scholar 

  52. Görlin, M.; Chernev, P.; Ferreira de Araújo, J.; Reier, T.; Dresp, S.; Paul, B.; Krähnert, R.; Dau, H.; Strasser, P. Oxygen evolution reaction dynamics, faradaic charge efficiency, and the active metal redox states of Ni-Fe oxide water splitting electrocatalysts. J. Am. Chem. Soc. 2016, 138, 5603–5614.

    Article  Google Scholar 

  53. Hunter, B. M.; Hieringer, W.; Winkler, J. R.; Gray, H. B.; Müller, A. M. Effect of interlayer anions on [NiFe]-LDH nanosheet water oxidation activity. Energy Environ. Sci. 2016, 9, 1734–1743.

    Article  Google Scholar 

  54. Bard, A. J.; Parsons, R.; Jordan, J. Standard Potentials in Aqueous Solution; CRC Press: Boca Raton, FL, USA, 1985.

    Google Scholar 

  55. Flynn Jr, C. M. Hydrolysis of inorganic iron (III) salts. Chem. Rev. 1984, 84, 31–41.

    Article  Google Scholar 

  56. Li, Z. H.; Shao, M. F.; An, H. L.; Wang, Z. X.; Xu, S. M.; Wei, M.; Evans, D. G.; Duan, X. Fast electrosynthesis of Fe-containing layered double hydroxide arrays toward highly efficient electrocatalytic oxidation reactions. Chem. Sci. 2015, 6, 6624–6631.

    Article  Google Scholar 

  57. Lu, Z. Y.; Xu, W. W.; Zhu, W.; Yang, Q.; Lei, X. D.; Liu, J. F.; Li, Y. P.; Sun, X. M.; Duan, X. Three-dimensional NiFe layered double hydroxide film for high-efficiency oxygen evolution reaction. Chem. Commun. 2014, 50, 6479–6482.

    Article  Google Scholar 

  58. Grosvenor, A. P.; Kobe, B. A.; Biesinger, M. C.; McIntyre, N. S. Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surf. Interface Anal. 2004, 36, 1564–1574.

    Article  Google Scholar 

  59. van Veenendaal, M. A.; Sawatzky, G. A. Nonlocal screening effects in 2p X-ray photoemission spectroscopy core-level line shapes of transition metal compounds. Phys. Rev. Lett. 1993, 70, 2459–2462.

    Article  Google Scholar 

  60. McIntyre, N. S.; Zetaruk, D. G. X-ray photoelectron spectroscopic studies of iron oxides. Anal. Chem. 1977, 49, 1521–1529.

    Article  Google Scholar 

  61. Li, X.-Q.; Zhang, W.-X. Iron nanoparticles: The core–shell structure and unique properties for Ni(II) sequestration. Langmuir 2006, 22, 4638–4642.

    Article  Google Scholar 

  62. Oblonsky, L. J.; Devine, T. M. A surface enhanced Raman spectroscopic study of the passive films formed in borate buffer on iron, nickel, chromium and stainless steel. Corrosion Sci. 1995, 37, 17–41.

    Article  Google Scholar 

  63. Li, H. B.; Yu, M. H.; Wang, F. X.; Liu, P.; Liang, Y.; **ao, J.; Wang, C. X.; Tong, Y. X.; Yang, G. W. Amorphous nickel hydroxide nanospheres with ultrahigh capacitance and energy density as electrochemical pseudocapacitor materials. Nat. Commun. 2013, 4, 1894.

    Article  Google Scholar 

  64. Bonin, P. M. L.; Jȩdral, W.; Odziemkowski, M. S.; Gillham, R. W. Electrochemical and Raman spectroscopic studies of the influence of chlorinated solvents on the corrosion behaviour of iron in borate buffer and in simulated groundwater. Corrosion Sci. 2000, 42, 1921–1939.

    Article  Google Scholar 

  65. Trotochaud, L.; Young, S. L.; Ranney, J. K.; Boettcher, S. W. Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: The role of intentional and incidental iron incorporation. J. Am. Chem. Soc. 2014, 136, 6744–6753.

    Article  Google Scholar 

  66. Stupnišek-Lisac, E.; Karšulin, M. Electrochemical behaviour of nickel in nitric acid. Electrochimica Acta 1984, 29, 1339–1343.

    Article  Google Scholar 

  67. El Haleem, S. M. A.; El Aal, E. E. A. Electrochemical behavior of nickel in HNO3 and the effect of chloride ions. J. Mater. Eng. Perform. 2004, 13, 784–792.

    Article  Google Scholar 

  68. McAteer, D.; Gholamvand, Z.; McEvoy, N.; Harvey, A.; O’Malley, E.; Duesberg, G. S.; Coleman, J. N. Thickness dependence and percolation scaling of hydrogen production rate in MoS2 nanosheet and nanosheet-carbon nanotube composite catalytic electrodes. ACS Nano 2015, 10, 672–683.

    Article  Google Scholar 

  69. Morales-Guio, C. G.; Liardet, L.; Hu, X. L. Oxidatively electrodeposited thin-film transition metal (oxy)hydroxides as oxygen evolution catalysts. J. Am. Chem. Soc. 2016, 138, 8946–8957.

    Article  Google Scholar 

  70. Sato, N.; Okamoto, G. Electrochemical passivation of metals. In Electrochemical Materials Science; Bockris, J. O.; Conway, B. E.; Yeager, E.; White, R. E., Eds; Springer: Boston, MA, USA, 1981; pp 193–245.

    Chapter  Google Scholar 

  71. Blesa, M. A.; Matijević, E. Phase transformations of iron oxides, oxohydroxides, and hydrous oxides in aqueous media. Adv. Colloid Interface Sci. 1989, 29, 173–221.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Australian Research Council (ARC) Discovery Project, the National Natural Science Foundation of China (Nos. 51372248 and 51432009) and Griffith University New Researcher Grant (NRG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huijun Zhao.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, H., Jiang, L., Liu, P. et al. Remarkably enhanced water splitting activity of nickel foam due to simple immersion in a ferric nitrate solution. Nano Res. 11, 3959–3971 (2018). https://doi.org/10.1007/s12274-017-1886-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1886-7

Keywords

Navigation