Log in

Enhancing both selectivity and coking-resistance of a single-atom Pd1/C3N4 catalyst for acetylene hydrogenation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Selective hydrogenation is an important industrial catalytic process in chemical upgrading, where Pd-based catalysts are widely used because of their high hydrogenation activities. However, poor selectivity and short catalyst lifetime because of heavy coke formation have been major concerns. In this work, atomically dispersed Pd atoms were successfully synthesized on graphitic carbon nitride (g-C3N4) using atomic layer deposition. Aberration-corrected high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) confirmed the dominant presence of isolated Pd atoms without Pd nanoparticle (NP) formation. During selective hydrogenation of acetylene in excess ethylene, the g-C3N4-supported Pd NP catalysts had strikingly higher ethylene selectivities than the conventional Pd/Al2O3 and Pd/SiO2 catalysts. In-situ X-ray photoemission spectroscopy revealed that the considerable charge transfer from the Pd NPs to g-C3N4 likely plays an important role in the catalytic performance enhancement. More impressively, the single-atom Pd1/C3N4 catalyst exhibited both higher ethylene selectivity and higher coking resistance. Our work demonstrates that the single-atom Pd catalyst is a promising candidate for improving both selectivity and coking-resistance in hydrogenation reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Argyle, M. D.; Bartholomew, C. H. Heterogeneous catalyst deactivation and regeneration: A review. Catalysts 2015, 5, 145–269.

    Article  Google Scholar 

  2. Barbier, J. Deactivation of reforming catalysts by coking— A review. Appl. Catal. 1986, 23, 225–243.

    Article  Google Scholar 

  3. Borodzinski, A.; Bond, G. C. Selective hydrogenation of ethyne in ethene-rich streams on palladium catalysts. Part 1. Effect of changes to the catalyst during reaction. Catal. Rev. 2006, 48, 91–144.

    Google Scholar 

  4. Bos, A. N. R.; Westerterp, K. R. Mechanism and kinetics of the selective hydrogenation of ethyne and ethene. Chem. Eng. Process. 1993, 32, 1–7.

    Article  Google Scholar 

  5. Schbib, N. S.; García, M. A.; Gígola, C. E.; Errazu, A. F. Kinetics of front-end acetylene hydrogenation in ethylene production. Ind. Eng. Chem. Res. 1996, 35, 1496–1505.

    Article  Google Scholar 

  6. Zhang, Q. W.; Li, J.; Liu, X. X.; Zhu, Q. M. Synergetic effect of Pd and Ag dispersed on Al2O3 in the selective hydrogenation of acetylene. Appl. Catal. A: Gen. 2000, 197, 221–228.

    Article  Google Scholar 

  7. Osswald, J.; Giedigkeit, R.; Jentoft, R.; Armbruster, M.; Girgsdies, F.; Kovnir, K.; Ressler, T.; Grin, Y.; Schlogl, R. Palladium–gallium intermetallic compounds for the selective hydrogenation of acetylene: Part I: Preparation and structural investigation under reaction conditions. J. Catal. 2008, 258, 210–218.

    Article  Google Scholar 

  8. Crabb, E. M.; Marshall, R. Properties of alumina supported Pd-Fe and Pt-Fe catalysts prepared using surface organo-metallic chemistry. Appl. Catal. A: Gen. 2001, 217, 41–53.

    Article  Google Scholar 

  9. El Kolli, N.; Delannoy, L.; Louis, C. Bimetallic Au–Pd catalysts for selective hydrogenation of butadiene: Influence of the preparation method on catalytic properties. J. Catal. 2013, 297, 79–92.

    Article  Google Scholar 

  10. Hou, R. J.; Ye, W. T.; Porosoff, M. D.; Chen, J. G.; Wang, T. F. Selective hydrogenation of 1,3-butadiene on Pd–Ni bimetallic catalyst: From model surfaces to supported catalysts. J. Catal. 2014, 316, 1–10.

    Article  Google Scholar 

  11. Verdier, S.; Didillon, B.; Morin, S.; Uzio, D. Pd-Sn/Al2O3 catalysts from colloidal oxide synthesis: II. Surface characterization and catalytic properties for buta-1,3-diene selective hydrogenation. J. Catal. 2003, 218, 288–295.

    Google Scholar 

  12. Sarkany, A.; Zsoldos, Z.; Stefler, G.; Hightower, J. W.; Guczi, L. Promoter effect of Pd in hydrogenation of 1,3-butadiene over Co-Pd catalysts. J. Catal. 1995, 157, 179–189.

    Article  Google Scholar 

  13. Goetz, J.; Volpe, M. A.; Gigola, C. E.; Touroude, R. Lowloaded Pd-Pb/a-Al2O3 catalysts: Effect of alloying in the hydrogenation of buta-1,3-diene and hydrogenation and isomerization of butenes. J. Catal. 2001, 199, 338–345.

    Article  Google Scholar 

  14. Pattamakomsan, K.; Ehret, E.; Morfin, F.; Gélin, P.; Jugnet, Y.; Prakash, S.; Bertolini, J. C.; Panpranot, J.; Aires, F. J. C. S. Selective hydrogenation of 1,3-butadiene over Pd and Pd–Sn catalysts supported on different phases of alumina. Catal. Today 2011, 164, 28–33.

    Article  Google Scholar 

  15. Lee, D. C.; Kim, J. H.; Kim, W. J.; Kang, J. H.; Moon, S. H. Selective hydrogenation of 1,3-butadiene on TiO2-modified Pd/SiO2 catalysts. Appl. Catal. A: Gen. 2003, 244, 83–91.

    Article  Google Scholar 

  16. Yi, H.; Du, H. Y.; Hu, Y. L.; Yan, H.; Jiang, H. L.; Lu, J. L. Precisely controlled porous alumina overcoating on Pd catalyst by atomic layer deposition: Enhanced selectivity and durability in hydrogenation of 1,3-butadiene. ACS Catal. 2015, 5, 2735–2739.

    Article  Google Scholar 

  17. Ding, L. B.; Yi, H.; Zhang, W. H.; You, R.; Cao, T.; Yang, J. L.; Lu, J. L.; Huang, W. X. Activating edge sites on Pd catalysts for selective hydrogenation of acetylene via selective Ga2O3 decoration. ACS Catal. 2016, 6, 3700–3707.

    Article  Google Scholar 

  18. Kang, J. H.; Shin, E. W.; Kim, W. J.; Park, J. D.; Moon, S. H. Selective hydrogenation of acetylene on Pd/SiO2 catalysts promoted with Ti, Nb and Ce oxides. Catal. Today 2000, 63, 183–188.

    Article  Google Scholar 

  19. Boucher, M. B.; Zugic, B.; Cladaras, G.; Kammert, J.; Marcinkowski, M. D.; Lawton, T. J.; Sykes, E. C. H.; Flytzani-Stephanopoulos, M. Single atom alloy surface analogs in Pd0.18Cu15 nanoparticles for selective hydrogenation reactions. Phys. Chem. Chem. Phys. 2013, 15, 12187–12196.

    Article  Google Scholar 

  20. Kyriakou, G.; Boucher, M. B.; Jewell, A. D.; Lewis, E. A.; Lawton, T. J.; Baber, A. E.; Tierney, H. L.; Flytzani-Stephanopoulos, M.; Sykes, E. C. H. Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations. Science 2012, 335, 1209–1212.

    Article  Google Scholar 

  21. Pei, G. X.; Liu, X. Y.; Wang, A. Q.; Li, L.; Huang, Y. Q.; Zhang, T.; Lee, J. W.; Jang, B. W. L.; Mou, C.-Y. Promotional effect of Pd single atoms on Au nanoparticles supported on silica for the selective hydrogenation of acetylene in excess ethylene. New J. Chem. 2014, 38, 2043–2051.

    Article  Google Scholar 

  22. Pei, G. X.; Liu, X. Y.; Wang, A. Q.; Lee, A. F.; Isaacs, M. A.; Li, L.; Pan, X. L.; Yang, X. F.; Wang, X. D.; Tai, Z. J. et al. Ag alloyed Pd single-atom catalysts for efficient selective hydrogenation of acetylene to ethylene in excess ethylene. ACS Catal. 2015, 5, 3717–3725.

    Article  Google Scholar 

  23. Zhou, H. R.; Yang, X. F.; Li, L.; Liu, X. Y.; Huang, Y. Q.; Pan, X. L.; Wang, A. Q.; Li, J.; Zhang, T. PdZn intermetallic nanostructure with Pd–Zn–Pd ensembles for highly active and chemoselective semi-hydrogenation of acetylene. ACS Catal. 2016, 6, 1054–1061.

    Article  Google Scholar 

  24. Vilé, G.; Albani, D.; Nachtegaal, M.; Chen, Z. P.; Dontsova, D.; Antonietti, M.; López, N.; Pérez-Ramírez, J. A stable single-site palladium catalyst for hydrogenations. Angew. Chem., Int. Ed. 2015, 54, 11265–11269.

    Google Scholar 

  25. Yan, H.; Cheng, H.; Yi, H.; Lin, Y.; Yao, T.; Wang, C. L.; Li, J. J.; Wei, S. Q.; Lu, J. L. Single-atom Pd1/graphene catalyst achieved by atomic layer deposition: Remarkable performance in selective hydrogenation of 1,3-butadiene. J. Am. Chem. Soc. 2015, 137, 10484–10487.

    Article  Google Scholar 

  26. Benavidez, A. D.; Burton, P. D.; Nogales, J. L.; Jenkins, A. R.; Ivanov, S. A.; Miller, J. T.; Karim, A. M.; Datye, A. K. Improved selectivity of carbon-supported palladium catalysts for the hydrogenation of acetylene in excess ethylene. Appl. Catal. A: Gen. 2014, 482, 108–115.

    Article  Google Scholar 

  27. Komhom, S.; Mekasuwandumrong, O.; Praserthdam, P.; Panpranot, J. Improvement of Pd/Al2O3 catalyst performance in selective acetylene hydrogenation using mixed phases Al2O3 support. Catal. Commun. 2008, 10, 86–91.

    Article  Google Scholar 

  28. Cervantes, G. G.; Aires, F. J. C. S.; Bertolini, J. C. Compared properties of Pd on thermo-conductor supports (SiC, Si3N4) and Pd on oxide supports (Al2O3, SiO2) for the 1,3-butadiene hydrogenation reaction. J. Catal. 2003, 214, 26–32.

    Article  Google Scholar 

  29. Wang, X. C.; Blechert, S.; Antonietti, M. Polymeric graphitic carbon nitride for heterogeneous photocatalysis. ACS Catal. 2012, 2, 1596–1606.

    Article  Google Scholar 

  30. Gong, Y. T.; Li, M. M.; Li, H. R.; Wang, Y. Graphitic carbon nitride polymers: Promising catalysts or catalyst supports for heterogeneous oxidation and hydrogenation. Green Chem. 2015, 17, 715–736.

    Article  Google Scholar 

  31. Lu, J. L.; Elam, J. W.; Stair, P. C. Synthesis and stabilization of supported metal catalysts by atomic layer deposition. Acc. Chem. Res. 2013, 46, 1806–1815.

    Article  Google Scholar 

  32. Suntola, T.; Hyvarinen, J. Atomic layer epitaxy. Annu. Rev. Mater. Sci. 1985, 15, 177–195.

    Article  Google Scholar 

  33. Liu, J.; Liu, Y.; Liu, N. Y.; Han, Y. Z.; Zhang, X.; Huang, H.; Lifshitz, Y.; Lee, S. T.; Zhong, J.; Kang, Z. H. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 2015, 347, 970–974.

    Article  Google Scholar 

  34. Han, Q.; Wang, B.; Gao, J.; Cheng, Z. H.; Zhao, Y.; Zhang, Z. P.; Qu, L. T. Atomically thin mesoporous nanomesh of graphitic C3N4 for high-efficiency photocatalytic hydrogen evolution. ACS Nano 2016, 10, 2745–2751.

    Article  Google Scholar 

  35. Lu, J. L.; Stair, P. C. Nano/subnanometer Pd nanoparticles on oxide supports synthesized by AB-type and low-temperature ABC-type atomic layer deposition: Growth and morphology. Langmuir 2010, 26, 16486–16495.

    Article  Google Scholar 

  36. Elam, J. W.; Zinovev, A.; Han, C. Y.; Wang, H. H.; Welp, U.; Hryn, J. N.; Pellin, M. J. Atomic layer deposition of palladium films on Al2O3 surfaces. Thin Solid Films 2006, 515, 1664–1673.

    Article  Google Scholar 

  37. Wang, H. W.; Wang, C. L.; Yan, H.; Yi, H.; Lu, J. L. Precisely-controlled synthesis of Au@Pd core–shell bimetallic catalyst via atomic layer deposition for selective oxidation of benzyl alcohol. J. Catal. 2015, 324, 59–68.

    Article  Google Scholar 

  38. Chen, B. R.; George, C.; Lin, Y. Y.; Hu, L. H.; Crosby, L.; Hu, X. Y.; Stair, P. C.; Marks, L. D.; Poeppelmeier, K. R.; Van Duyne, R. P. et al. Morphology and oxidation state of ALD-grown Pd nanoparticles on TiO2- and SrO-terminated SrTiO3 nanocuboids. Surf. Sci. 2016, 648, 291–298.

    Article  Google Scholar 

  39. Gao, G. P.; Jiao, Y.; Waclawik, E. R.; Du, A. J. Single atom (Pd/Pt) supported on graphitic carbon nitride as an efficient photocatalyst for visible-light reduction of carbon dioxide. J. Am. Chem. Soc. 2016, 138, 6292–6297.

    Article  Google Scholar 

  40. Lei, Y.; Lu, J.; Luo, X. Y.; Wu, T. P.; Du, P.; Zhang, X. Y.; Ren, Y.; Wen, J. G.; Miller, D. J.; Miller, J. T. et al. Synthesis of porous carbon supported palladium nanoparticle catalysts by atomic layer deposition: Application for rechargeable lithium-O2 battery. Nano Lett. 2013, 13, 4182–4189.

    Article  Google Scholar 

  41. Gong, T.; Qin, L. J.; Zhang, W.; Wan, H.; Lu, J.; Feng, H. Activated carbon supported palladium nanoparticle catalysts synthesized by atomic layer deposition: Genesis and evolution of nanoparticles and tuning the particle size. J. Phys. Chem. C 2015, 119, 11544–11556.

    Article  Google Scholar 

  42. Zhou, W. J.; Lee, J. Y. Particle size effects in Pd-catalyzed electrooxidation of formic acid. J. Phys. Chem. C 2008, 112, 3789–3793.

    Article  Google Scholar 

  43. Tay, Q.; Kanhere, P.; Ng, C. F.; Chen, S.; Chakraborty, S.; Huan, A. C. H.; Sum, T. C.; Ahuja, R.; Chen, Z. Defect engineered g-C3N4 for efficient visible light photocatalytic hydrogen production. Chem. Mater. 2015, 27, 4930–4933.

    Article  Google Scholar 

  44. Zemlyanov, D.; Aszalos-Kiss, B.; Kleimenov, E.; Teschner, D.; Zafeiratos, S.; Hävecker, M.; Knop-Gericke, A.; Schlogl, R.; Gabasch, H.; Unterberger, W. et al. In situ XPS study of Pd(111) oxidation. Part 1: 2D oxide formation in 10-3 mbar O2. Surf. Sci. 2006, 600, 983–994.

    Article  Google Scholar 

  45. Zhou, Y. K.; Pasquarelli, R.; Holme, T.; Berry, J.; Ginley, D.; O'Hayre, R. Improving PEM fuel cell catalyst activity and durability using nitrogen-doped carbon supports: Observations from model Pt/HOPG systems. J. Mater. Chem. 2009, 19, 7830–7838.

    Article  Google Scholar 

  46. Jia, L. J.; Bulushev, D. A.; Podyacheva, O. Y.; Boronin, A. I.; Kibis, L. S.; Gerasimov, E. Y.; Beloshapkin, S.; Seryak, I. A.; Ismagilov, Z. R.; Ross, J. R. H. Pt nanoclusters stabilized by N-doped carbon nanofibers for hydrogen production from formic acid. J. Catal. 2013, 307, 94–102.

    Article  Google Scholar 

  47. Wang, Q. J.; Che, J. G. Origins of distinctly different behaviors of Pd and Pt contacts on graphene. Phys. Rev. Lett. 2009, 103, 066802.

    Article  Google Scholar 

  48. Zhang, W. Y.; Huang, H. J.; Li, F.; Deng, K. M.; Wang, X. Palladium nanoparticles supported on graphitic carbon nitride-modified reduced graphene oxide as highly efficient catalysts for formic acid and methanol electrooxidation. J. Mater. Chem. A 2014, 2, 19084–19094.

    Article  Google Scholar 

  49. Noupa, C.; Rousset, J. L.; Tardy, B.; Bertolini, J. C. Sizeable deactivation effect for the 1,3-butadiene hydrogenation on vapor-deposited Pd aggregates on graphite. Catal. Lett. 1993, 22, 197–203.

    Article  Google Scholar 

  50. Silvestre-Albero, J.; Rupprechter, G.; Freund, H. J. Atmospheric pressure studies of selective 1,3-butadiene hydrogenation on well-defined Pd/Al2O3/NiAl(110) model catalysts: Effect of Pd particle size. J. Catal. 2006, 240, 58–65.

    Article  Google Scholar 

  51. Binder, A.; Seipenbusch, M.; Muhler, M.; Kasper, G. Kinetics and particle size effects in ethene hydrogenation over supported palladium catalysts at atmospheric pressure. J. Catal. 2009, 268, 150–155.

    Article  Google Scholar 

  52. Borodzinski, A.; Bond, G. C. Selective hydrogenation of ethyne in ethene-rich streams on palladium catalysts, Part 2: Steady-state kinetics and effects of palladium particle size, carbon monoxide, and promoters. Catal. Rev. 2008, 50, 379–469.

    Article  Google Scholar 

  53. Kang, J. H.; Shin, E. W.; Kim, W. J.; Park, J. D.; Moon, S. H. Selective hydrogenation of acetylene on TiO2-added Pd catalysts. J. Catal. 2002, 208, 310–320.

    Article  Google Scholar 

  54. Sandell, A.; Beutler, A.; Jaworowski, A.; Wiklund, M.; Heister, K.; Nyholm, R.; Andersen, J. N. Adsorption of acetylene and hydrogen on Pd(111): Formation of a wellordered ethylidyne overlayer. Surf. Sci. 1998, 415, 411–422.

    Article  Google Scholar 

  55. Borodzinski, A. Hydrogenation of acetylene-ethylene mixtures on a commercial palladium catalyst. Catal. Lett. 1999, 63, 35–42.

    Article  Google Scholar 

  56. Ouyang, R. H.; Liu, J. X.; Li, W. X. Atomistic theory of ostwald ripening and disintegration of supported metal particles under reaction conditions. J. Am. Chem. Soc. 2013, 135, 1760–1771.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Thousand Talents Plan, the National Natural Science Foundation of China (Nos. 21473169, 21673215, and 51402283), the Fundamental Research Funds for the Central Universities (Nos. WK2060030017 and WK2060190026), and the startup funds from the University of Science and Technology of China. This work was also supported by Hefei Science Center (No. 2015HSC-UP010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junling Lu.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., **a, Y., Cao, Y. et al. Enhancing both selectivity and coking-resistance of a single-atom Pd1/C3N4 catalyst for acetylene hydrogenation. Nano Res. 10, 1302–1312 (2017). https://doi.org/10.1007/s12274-016-1416-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1416-z

Keywords

Navigation