Log in

Nanoplasmonic colloidal suspensions for the enhancement of the luminescent emission from single-walled carbon nanotubes

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Aiming to enhance the luminescence yield of carbon nanotubes, we introduce a new class of hybrid nanoplasmonic colloidal systems (π-hybrids). Nanotubes dispersed in gold nanorod colloidal suspensions yield hybrid structures exhibiting enhanced luminescence up to a factor of 20. The novelty of the proposed enhancement mechanism relies on including metal proximity effects in addition to its localized surface plasmons. This simple, robust and flexible technique enhances the luminescence of nanotubes with chiralities whose enhancement has never reported before, for example the (8,4) tube.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reich, S; Thomsen, C.; Maultzsch, J. Carbon Nanotubes: Basic Concepts and Physical Properties; Wiley-VCH: Berlin, 2004.

    Google Scholar 

  2. O’Connell, M. J.; Bachilo, S. M.; Huffman, C. B.; Rialon, K. L.; Boul, P. J.; Noon, W. H. Band gap fluorescence from individual single-walled carbon nanotubes. Science 2002, 297, 593–596.

    Article  Google Scholar 

  3. Bachilo, S. M.; Strano, M. S.; Kittrell, C.; Hauge, R. H.; Smalley, R. E.; Weisman, R. B. Structure-assigned optical spectra of single-walled carbon nanotubes. Science 2002, 298, 2361–2366.

    Article  CAS  Google Scholar 

  4. Maultzsch, J.; Pomraenke, R.; Reich, S.; Chang, E.; Prezzi, D.; Ruini, A.; Molinari, E.; Strano, M. S.; Thomsen, C.; Lienau, C. Exciton binding energies in carbon nanotubes from two-photon photoluminescence. Phys. Rev. B 2005, 72, 241402.

    Article  Google Scholar 

  5. Wang, F.; Dukovic, G.; Brus, L. E.; Heinz, T. F. The optical resonances in carbon nanotubes arise from excitons. Science 2005, 308, 838–841.

    Article  CAS  Google Scholar 

  6. Ernst, F.; Heek, T.; Setaro, A.; Haag, R.; Reich, S. Energy transfer in nanotube-perylene complexes. Adv. Funct. Mater. 2012, 22, 3921–3926.

    Article  CAS  Google Scholar 

  7. Carlson, L. J.; Maccagnano, S. E.; Zheng, M.; Silcox, J.; Krauss, T. D. Fluorescence efficiency of individual carbon nanotubes. Nano Lett. 2007, 7, 3698–3703.

    Article  CAS  Google Scholar 

  8. Jones, M.; Engtrakul, C.; Metzger, W. K.; Ellingson, R. J.; Nozik, A. J.; Heben, M. J.; Rumbles, G. Analysis of photoluminescence from solubilized single-walled carbon nanotubes. Phys. Rev. B 2005, 71, 115426.

    Article  Google Scholar 

  9. Ju, S.; Kopcha, W.; Papadimitrakopoulos, F. Brightly fluorescent single-walled carbon nanotubes via an oxygen-excluding surfactant organization. Science 2009 323, 1319–1323.

    Article  CAS  Google Scholar 

  10. Ahmad, A.; Kern, K.; Balasubramanian, K. Selective enhancement of carbon nanotube photoluminescence by resonant energy transfer. ChemPhysChem 2009, 10, 905–909.

    Article  CAS  Google Scholar 

  11. **a, F.; Steiner, M.; Lin, Y. M.; Avouris, P. A microcavity-controlled, current-driven, on-chip nanotube emitter at infrared wavelengths. Nat. Nanotechnol. 2008, 3, 609–613.

    Article  CAS  Google Scholar 

  12. Gaufrès, E.; Izard, N.; Roux, X. L.; Kazaoui, S.; Marris-Morini, D.; Cassan, E.; Vivien, L. Optical microcavity with semiconducting single-wall carbon nanotubes. Opt. Express 2010, 18, 5740–5745.

    Article  Google Scholar 

  13. Watahiki, R.; Shimada, T.; Zhao, P.; Chiashi, S.; Iwamoto, S.; Arakawa, Y.; Maruyama, S.; Kato, Y. K. Enhancement of carbon nanotube photoluminescence by photonic crystal nanocavities. Appl. Phys. Lett. 2012, 101, 141124.

    Article  Google Scholar 

  14. Lakowicz, J. R.; Shen, Y.; D’Auria, S.; Malicka, J.; Fang, J.; Gryczynski, Z.; Gryczynski, I. Radiative decay engineering: 2. Effects of silver island films on fluorescence intensity, lifetimes, and resonance energy transfer. Anal. Biochem. 2002, 301, 261–277.

    Article  CAS  Google Scholar 

  15. Ming, T.; Chen, H.; Jiang, R.; Li, Q.; Wang, J. Plasmon-controlled fluorescence: Beyond the intensity enhancement. J. Phys. Chem. Lett. 2012, 3, 191–202.

    Article  CAS  Google Scholar 

  16. Sakashita, T.; Miyauchi, Y.; Matsuda, K.; Kanemitsu, Y. Plasmon-assisted photoluminescence enhancement of single-walled carbon nanotubes on metal surfaces. Appl. Phys. Lett. 2010, 97, 063110.

    Article  Google Scholar 

  17. Halas, N. J. Plasmonics: An emerging field fostered by nano letters. Nano Lett. 2010, 10, 3816–3822.

    Article  CAS  Google Scholar 

  18. Heeg, S.; Fernandez-Garcia, R.; Oikonomou, A.; Schedin, F.; Narula, R.; Maier, S. A.; Vijayaraghavan, A.; Reich, S. Polarized plasmonic enhanced by au nanostructures probed through Raman scattering of suspended grapheme. Nano Lett. 2013, 13, 301–308.

    Article  CAS  Google Scholar 

  19. Hong, G.; Tabakman, S. M.; Welsher, K.; Wang, H.; Wang, X.; Dai, H.; Matsuda, K.; Kanemitsu, Y.; Irie, K.; Saiki, T.; Someya, T.; Miyauchi, Y.; Maruyama, S. Metal-enhanced fluorescence of carbon nanotubes. J. Am. Chem. Soc. 2010, 132, 15920–15923.

    Article  CAS  Google Scholar 

  20. Deng, W.; Goldys, E. M. Plasmonic approach to enhanced fluorescence for applications in biotechnology and the life sciences. Langmuir 2012, 28, 10152–10163.

    Article  CAS  Google Scholar 

  21. Cherukuri, P.; Bachilo, S. M.; Litovsky, S. H.; Weisman, R. B. Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells. J. Am. Chem. Soc. 2004, 126, 15638–15639.

    Article  CAS  Google Scholar 

  22. Leeuw, T. K.; Reith, R. M.; Simonette, R. A.; Harden, M. E.; Cherukuri, P.; Tsyboulski, D. A.; Beckingham, K. M.; Weisman, R. B. Single-walled carbon nanotubes in the intact organism: Near-IR imaging and biocompatibility studies in drosophila. Nano Lett. 2007, 7, 2650–2654.

    Article  CAS  Google Scholar 

  23. Welsher, K.; Liu, Z.; Sherlock, S. P.; Robinson, J. T.; Chen, Z.; Daranciang, D.; Dai, H. A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nat. Nanotechnol. 2009, 4, 773–780.

    Article  CAS  Google Scholar 

  24. Wenseleers, W.; Vlasov, I.; Goovaerts, E.; Obraztsova, E.; Lobach, A.; Bouwen, A. Efficient isolation and solubilization of pristine single-walled nanotubes in bile salt micelles. Adv. Funct. Mater. 2004, 14, 1105–1112.

    Article  CAS  Google Scholar 

  25. Wang, R. K.; Chen, W. C.; Campos, D. K.; Ziegler, K. J. Swelling the micelle core surrounding single-walled carbon nanotubes with water-immiscible organic solvents. J. Am. Chem. Soc. 2008, 130, 16330–16337.

    Article  CAS  Google Scholar 

  26. Setaro, A.; Popeney, C. S.; Trappmann, B.; Datsyuk, V.; Haag, R.; Reich, S. Polyglycerol-derived amphiphiles for single walled carbon nanotube suspension. Chem. Phys. Lett. 2010, 493, 147–150.

    Article  CAS  Google Scholar 

  27. Popeney, C. S.; Setaro, A.; Mutihac, R. C.; Bluemmel, P.; Trappmann, B.; Vonneman, J.; Reich, S.; Haag, R. Polyglycerol-derived amphiphiles for the solubilization of single-walled carbon nanotubes in water: A Structure-property study. ChemPhysChem 2012, 13, 203–211.

    Article  CAS  Google Scholar 

  28. Choi, J. H.; Strano, M. S. Solvatochromism in single-walled carbon nanotubes. Appl. Phys. Lett. 2007, 90, 223114.

    Article  Google Scholar 

  29. Malic, E.; Weber, C.; Richter, M.; Atalla, V.; Klamroth, T.; Saalfrank, P.; Reich, S.; Knorr, A. Microscopic model of the optical absorption of carbon nanotubes functionalized with molecular spiropyran photoswitches. Phys. Rev. Lett. 2011, 106, 097401.

    Article  CAS  Google Scholar 

  30. Setaro, A.; Bluemmel, P.; Maity, C.; Hecht, S.; Reich, S. Non-covalent functionalization of individual nanotubes with spiropyran-based molecular switches. Adv. Funct. Mater. 2012, 22, 2425–2431.

    Article  CAS  Google Scholar 

  31. Bluemmel, P.; Setaro, A.; Maity, C.; Hecht, S.; Reich, S. Tuning the interaction between carbon nanotubes and dipole switches: The influence of the change of the nanotube-spiropyran distance. J. Phys.: Condens. Mat. 2012, 24, 394005.

    Article  CAS  Google Scholar 

  32. Cambré, S.; Santos, S. M.; Wenseleers, W.; Nugraha, A. R. T.; Saito, R.; Cognet, L.; Lounis, B. Luminescence properties of individual empty and water-filled single-walled carbon nanotubes. ACS Nano 2012, 6, 2649–2655.

    Article  Google Scholar 

  33. Lee, J.; Hernandez, P.; Lee, J.; Govorov, A. O.; Kotov, N. A. Exciton-plasmon interactions in molecular spring assemblies of nanowires and wavelength-based protein detection. Nat. Mater. 2007, 6, 291–295.

    Article  CAS  Google Scholar 

  34. Kou, X.; Ni, W.; Tsung, C. K.; Chan, K.; Lin, H. Q.; Stucky, G.; Wang, J. Growth of gold bipyramids with improved yield and their curvature-directed oxidation. Small 2007, 3, 2103–2013.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Setaro.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glaeske, M., Setaro, A. Nanoplasmonic colloidal suspensions for the enhancement of the luminescent emission from single-walled carbon nanotubes. Nano Res. 6, 593–601 (2013). https://doi.org/10.1007/s12274-013-0335-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-013-0335-5

Keywords

Navigation