Log in

Ultralong aligned single-walled carbon nanotubes on flexible fluorphlogopite mica for strain sensors

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Single-walled carbon nanotubes (SWNTs) are expected to be an ideal candidate for making highly efficient strain sensing devices owing to their unique mechanical, electronic, and electromechanical properties. Here we present the use of fluorphlogopite mica (F-mica) as a flexible, high-temperature-bearing and mechanically robust substrate for the direct growth of horizontally aligned ultra-long SWNT arrays by chemical vapor deposition (CVD), which in turn enables the straightforward, facile, and cost-effective fabrication of macro-scale SWNT-array-based strain sensors. Strain sensing tests of the SWNT-array devices demonstrated fairly good strain sensitivity with high ON-state current density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Park, G.; Rosing, T.; Todd, M. D.; Farrar, C. R.; Hodgkiss, W. Energy harvesting for structural health monitoring sensor networks. ASCE J. Infrastruct. Syst. 2008, 14, 64–79.

    Article  Google Scholar 

  2. Dharap, P.; Li, Z.; Nagarajaiah, S.; Barrera, E. V. Nanotube film based on single-wall carbon nanotubes for strain sensing. Nanotechnology 2004, 15, 379–382.

    Article  CAS  Google Scholar 

  3. Li, Z.; Dharap, P.; Nagarajaiah, S.; Barrera, E. V.; Kim, J. D. Carbon nanotube film sensors. Adv. Mater. 2004, 16, 640–643.

    Article  CAS  Google Scholar 

  4. Lee, Y.; Bae, S.; Jang, H.; Jang, S.; Zhu, S. -E.; Sim, S. H.; Song, Y. I.; Hong, B. H.; Ahn, J. -H. Wafer-scale synthesis and transfer of graphene films. Nano Lett. 2010, 10, 490–493.

    Article  CAS  Google Scholar 

  5. Yu, W. J.; Lee, S. Y.; Chae, S. H.; Perello, D.; Han, G. H.; Yun, M.; Lee, Y. H. Small hysteresis nanocarbon-based integrated circuits on flexible and transparent plastic substrate. Nano Lett. 2011, 11, 1344–1350.

    Article  CAS  Google Scholar 

  6. Nardelli, M. B.; Yakobson, B. I.; Bernholc, J. Mechanism of strain release in carbon nanotubes. Phys. Rev. B 1997, 57, R4277–R4280.

    Article  Google Scholar 

  7. Yang, L.; Anantram, M. P.; Han, J.; Lu, J. P. Band-gap change of carbon nanotubes: Effect of small uniaxial and torsional strain. Phys. Rev. B 1999, 60, 13874–13878.

    Article  CAS  Google Scholar 

  8. Yang, L.; Han, J. Electronic structure of deformed carbon nanotubes. Phys. Rev. Lett. 2000, 85, 154–157.

    Article  CAS  Google Scholar 

  9. Cao, J.; Wang, Q.; Dai, H. J. Electromechanical properties of metallic, quasimetallic, and semiconducting carbon nanotubes under stretching. Phys. Rev. Lett. 2003, 90, 157601.

    Article  Google Scholar 

  10. Grow, R. J.; Wang, Q.; Cao, J.; Wang, D. W.; Dai, H. J. Piezoresistance of carbon nanotubes on deformable thin-film membranes. Appl. Phys. Lett. 2005, 86, 093104.

    Article  Google Scholar 

  11. Huang, S. M.; Cai, X. Y.; Liu, J. Growth of millimeter-long and horizontally aligned single-walled carbon nanotubes on flat substrates. J. Am. Chem. Soc. 2003, 125, 5636–5637.

    Article  CAS  Google Scholar 

  12. Hong, B. H.; Lee, J. Y.; Beetz, T.; Zhu, Y.; Kim, P.; Kim, K. S. Quasi-continuous growth of ultralong carbon nanotube arrays. J. Am. Chem. Soc. 2005, 127, 15336–15337.

    Article  CAS  Google Scholar 

  13. Zhou, W. W.; Han, Z. Y.; Wang, J. Y.; Zhang, Y.; **, Z.; Sun, X.; Zhang, Y. W.; Yan, C. H.; Li, Y. Copper catalyzing growth of single-walled carbon nanotubes on substrates. Nano Lett. 2006, 6, 2987–2990.

    Article  CAS  Google Scholar 

  14. Reina, A.; Hofmann, M.; Zhu, D.; Kong, J. Growth mechanism of long and horizontally aligned carbon nanotubes by chemical vapor deposition. J. Phys. Chem. C 2007, 111, 7292–7297.

    Article  CAS  Google Scholar 

  15. Ismach, A.; Segev, L.; Wachtel, E.; Joselevich, E. Atomic-step-templated formation of single wall carbon nanotube patterns. Angew. Chem. Int. Ed. 2004, 43, 6140–6143.

    Article  CAS  Google Scholar 

  16. Kocabas, C.; Hur, S. H.; Gaur, A.; Meitl, M. A.; Shim, M.; Rogers, J. A. Guided growth of large-scale, horizontally aligned arrays of single-walled carbon nanotubes and their use in thin-film transistors. Small 2005, 1, 1110–1116.

    Article  CAS  Google Scholar 

  17. Han, S.; Liu, X. L.; Zhou, C. W. Template-free directional growth of single-walled carbon nanotubes on a-and r-plane sapphire. J. Am. Chem. Soc. 2005, 127, 5294–5295.

    Article  CAS  Google Scholar 

  18. Ago, H.; Nakamura, K.; Ikeda, K.; Uehara, N.; Ishigami, N.; Tsuji, M. Aligned growth of isolated single-walled carbon nanotubes programmed by atomic arrangement of substrate surface. Chem. Phys. Lett. 2005, 408, 433–438.

    Article  CAS  Google Scholar 

  19. Louarn, A. L.; Kapche, F.; Bethoux J. M.; Happy, H.; Dambrine, G.; Deryche V.; Chenevier, P.; Izard, N.; Goffman, M. F.; Bourgoin, J. P. Intrinsic current gain cutoff frequency of 30 GHz with carbon nanotube transistors. Appl. Phys. Lett. 2007, 90, 233108.

    Article  Google Scholar 

  20. Chimot, N.; Derycke, V.; Goffman, M. F.; Bourgoin, J. P.; Happy, H.; Dambrine, G. Gigahertz frequency flexible carbon nanotube transistors. Appl. Phys. Lett. 2007, 91, 153111.

    Article  Google Scholar 

  21. Ryu, K.; Badmaev, A.; Wang, C.; Lin, A.; Patil, N.; Gomez, L.; Kumar, A.; Mitra, S.; Wong, H. -S. P.; Zhou, C. W. CMOS-analogous wafer-scale nanotube-on-insulator approach for submicrometer devices and integrated circuits using aligned nanotubes. Nano Lett. 2009, 9, 189–197.

    Article  CAS  Google Scholar 

  22. Ishikawa, F. N.; Chang, H. K.; Ryu, K.; Chen, P. C.; Badmaev, A.; De Arco, L. G.; Shen, G. Z.; Zhou, C. W. Transparent electronics based on transfer printed aligned carbon nanotubes on rigid and flexible substrates. ACS Nano 2009, 3, 73–79.

    Article  CAS  Google Scholar 

  23. Bhaviripudi, S.; Reina, A.; Qi, J.; Kong, J.; Belcher, A. M. Block-copolymer assisted synthesis of arrays of metal nanoparticles and their catalytic activities for the growth of SWNTs. Nanotechnology 2006, 17, 5080–5086.

    Article  CAS  Google Scholar 

  24. Jorio, A.; Dresselhaus, G.; Dresselhaus, M. S. Carbon Nanotubes: Advanced Topics in Synthesis, Properties and Applications; Springer Series in Topics in Apply Physics; Springer-Verlag: Berlin Heidelberg, 2008; Vol. 111.

    Google Scholar 

  25. Chriac, H.; Urse, M.; Rusu, F.; Hison, C.; Neagu, M. Ni-Ag thin films as strain-sensitive materials for piezoresistive sensors. Sens. Actuator A-Phys. 1999, 76, 376–380.

    Article  Google Scholar 

  26. Gullapalli, H.; Vemuru, V. S. M.; Kumar, A.; Botello-Mendez, A.; Vajtai, R.; Terrones, M.; Nagarajaiah, S.; Ajayan, P. M. Flexible piezoelectric ZnO-paper nanocomposite strain sensor. Small 2010, 6, 1641–1646.

    Article  CAS  Google Scholar 

  27. Stampfer, C.; Helbling, T.; Obergfell, D.; Scho1berle, B.; Tripp, M. K.; Jungen, A.; Roth, S.; Bright, V. M.; Hierold, C. Fabrication of single-walled carbon-nanotube-based pressure sensors. Nano Lett. 2006, 6, 233–237.

    Article  CAS  Google Scholar 

  28. Chang, N. K.; Su, C. C.; Chang S. H. Fabrication of single-walled carbon nanotube flexible strain sensors with high sensitivity. Appl. Phys. Lett. 2008, 92, 063501.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenlong Wang, Yu Sui or Xuedong Bai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, M., Liu, K., Wang, W. et al. Ultralong aligned single-walled carbon nanotubes on flexible fluorphlogopite mica for strain sensors. Nano Res. 5, 443–449 (2012). https://doi.org/10.1007/s12274-012-0228-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-012-0228-z

Keywords

Navigation