Log in

Statistical optimization of medium components to increase the manganese peroxidase productivity by Phanerochaete chrysosporium NCIM 1197

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The production of manganese peroxidase (MnP) by the white-rot fungus Phanerochaete chrysosporium NCIM 1197 was investigated by the screening and optimization of the media constituents and physiological factors. MnP production by the fungus was used as the response to screen the media constituents with statistically valid Plackett-Burman (P-B) design. Response surface methodology (RSM) was applied to optimize the level of screened media constituents. Amongst the media constituents screened, glucose, maltose, ammonium chloride, and urea were selected as the most important for MnP enhancement. A five-level Central Composite Design (CCD) was used in optimizing the important media constituents for maximizing the MnP production. The optimal medium composition for maximum MnP production was 13.88 mM of glucose, 13.88 mM of maltose, 0.02 mM of ammonium chloride, and 0.02 mM of urea. The final experiment was conducted to validate the model, which was shown to produce 70.20 U/mL of MnP with a predicted value of 66.49 U/mL on the 8th day of incubation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cameron, M. D., S. Timofeevski, and S. D. Aust (2000) Enzymology of Phanerochaete chrysosporium with respect to the degradation of recalcitrant compounds and xenobiotics. Appl. Microbiol. Biotechnol. 54: 751–758.

    Article  CAS  Google Scholar 

  2. Gnanamani, A., M. Jauaprakashvel, M. Arulmani, and S. Sadulla (2006) Effect of inducers and culturing processes on laccase synthesis in P. chrysosporium NCIM 1197 and the constitutive expression of laccase isozymes. Enzyme Microb. Technol. 38: 1017–1021.

    Article  CAS  Google Scholar 

  3. Kersten, P. and D. Cullen (2007) Extracellular oxidative systems of the lignin-degrading Basidiomycete Phanerochaete chrysosporium. Fungal Genet Biol. 44: 77–87.

    Article  CAS  Google Scholar 

  4. Hatakka, A. (1994) Lignin-modifying enzymes from selected white-rot fungi: Production and role from in lignin degradation. FEMS Microbiol. Rev. 13: 125–135.

    Article  CAS  Google Scholar 

  5. Wariishi, H., L. Akileswaran, and M. H. Gold (1988) Manganese peroxidase from the basidiomycete Phanerochaete chrysosporium: Spectral characterization of the oxidized states and the catalytic cycle. Biochemistry 27: 5365–5370.

    Article  CAS  Google Scholar 

  6. Field, J. A., H. Baten, F. Boelsma, and W. H. Rulkens (1996) Biological elimination of polycyclic aromatic hydrocarbons in solvent extracts of polluted soil by the white rot fungus, Bjerkandera sp. strain BOS55. Environ. Technol. 17: 317–323.

    Article  CAS  Google Scholar 

  7. Michel Jr, F. C., S. B. Dass, E. A. Grulke, and C. A. Reddy (1991) Role of manganese peroxidases and lignin peroxidases of Phanerochaete chrysosporium in the decolorization of kraft bleach plant effluent. Appl. Environ. Microbiol. 57: 2368–2375.

    CAS  Google Scholar 

  8. Young, R. A. and M. Akhtar (1998) Environmentally friendly technologies for the pulp and paper industry. 1st ed., John Wiley & Sons Inc., UK.

    Google Scholar 

  9. Reddy, G. V. B. and M. H. Gold (2000) Degradation of pentachlorophenol by Phanerochaete chrysosporium: intermediates and reactions involved. Microbiology 146: 405–413.

    CAS  Google Scholar 

  10. Stahl, J. D., B. Van Aken, M. D. Cameron, and S. D. Aust (2001) Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) biodegradation in liquid and solid-state matrices by Phanerochaete chrysosporium. Bioremed. J. 5: 13–25.

    Article  Google Scholar 

  11. Wang, C., H. Sun, J. Li, Y. Li, and Q. Zhang (2009) Enzyme activities during degradation of polycyclic aromatic hydrocarbons by white rot fungus Phanerochaete chrysosporium in soils. Chemosphere 77: 733–738.

    Article  CAS  Google Scholar 

  12. Wong, D. W. S. (2009) Structure and action mechanism of ligninolytic enzymes. Appl. Biochem. Biotechnol. 157: 174–209.

    Article  CAS  Google Scholar 

  13. Christov L. P., M. Akhtar, and B. A. Prior (1996) Biotechnology in the pulp and paper industry: Recent advances in applied and fundamental research. Biobleaching in dissolving pulp production. pp. 625–628. In: E. Srebotnik and K. Messner (eds.). Proceedings of the 6 th International conference on biotechnology in the pulp and paper industry. Facultas-Univ.-Verl., Austria.

    Google Scholar 

  14. Singh, P., O. Sulaiman, R. Hashim, P. F. Rupani, and L. C. Peng (2010) Biopul** of lignocellulosic material using different fungal species: A review. Rev. Environ. Sci. Biotechnol. 9: 141–151.

    Article  CAS  Google Scholar 

  15. Plackett, R. L. and J. P. Burman (1946) The design of optimum multifactorial experiments. Biometrika 33: 305–325.

    Article  Google Scholar 

  16. Montgomery, D. C. (1991) Design and analysis of experiments. 3rd ed., John Wiley & Sons Inc., USA.

    Google Scholar 

  17. Reddy, L. V. A., Y. J. Wee, J. S. Yun, and H. W. Ryu (2008) Optimization of alkaline protease production by batch culture of Bacillus sp. RKY3 through Plackett-Burman and response surface methodological approaches. Bioresour. Technol. 99: 2242–2249.

    Article  CAS  Google Scholar 

  18. Tien, M. and T. K. Kirk (1988) Lignin peroxidase of Phanerochaete chrysosporium. pp. 238–249. In: W. A. Wood, and S. T. Kellogg (eds.). Methods in Enzymology: Biomass, Part B: Lignin, Pectin and Chitin. Academic Press, San Diego, USA.

    Chapter  Google Scholar 

  19. Paszczynski, A., R. L. Crawford, and V. B. Huynh (1988) Manganese peroxidase of Phanerochaete chrysosporium: Purification. pp. 264–270. In: W. A. Wood and S. T. Kellogg (eds.). Methods in Enzymology: Biomass, Part B: Lignin, Pectin and Chitin. Academic Press, San Diego, USA.

    Chapter  Google Scholar 

  20. Galhaup, C., H. Wagner, B. Hinterstoisser, and D. Haltrich (2002) Increased production of laccase by the wood-degrading basidiomycete Trametes pubescens. Enzyme Microb. Technol. 30: 529–536.

    Article  CAS  Google Scholar 

  21. Kirk, T. K. and H. M. Chang (1990) Biotechnology in pulp and paper manufacture: Applications and fundamental investigations. Proceedings of the Fourth International Conference on Biotechnology in the Pulp and Paper Industry. Butterworth-Heinemann, NY, USA.

    Google Scholar 

  22. Bono, J. J., P. Goulas, J. F. Boe, N. Portet, and J. L. Seris (1990) Effect of Mn(II) on reactions catalyzed by lignin peroxidase from Phanerochaete chrysosporium. Eur. J. Biochem. 192: 189–193.

    Article  CAS  Google Scholar 

  23. Karimi, A., F. Vahabzadeh, and B. Bonakdarpour (2006) Use of Phanerochaete chrysosporium immobilized on Kissiris for synthetic dye decolourization: Involvement of manganese peroxidase. World J. Microbiol. Biotechnol. 22: 1251–1257.

    Article  CAS  Google Scholar 

  24. Khiyami, M. A., A. L. Pometto(III), and W. J. Kennedy (2006) Ligninolytic enzyme production by Phanerochaete chrysosporium in plastic composite support biofilm stirred tank bioreactors. J. Agric. Food Chem. 8: 1693–1698.

    Article  Google Scholar 

  25. Novotný, C., K. Svobodová, P. Erbanová, T. Cajthaml, A. Kasinath, E. Lang, and V. Sasek (2004) Ligninolytic fungi in bioremediation: Extracellular enzyme production and degradation rate. Soil Biol. Biochem. 36: 1545–1551.

    Article  Google Scholar 

  26. Kapich, A. N., B. A. Prior, A. Botha, S. Galkin, T. Lundell, and A. Hatakka (2004) Effect of lignocellulose-containing substrates on production of ligninolytic peroxidases in submerged cultures of Phanerochaete chrysosporium ME-446. Enzyme Microb. Technol. 34: 187–195.

    Article  CAS  Google Scholar 

  27. Pazarlioglu, N. K., R. O. Urek, and F. Ergun (2005) Biodecolourization of direct blue 15 by immobilized Phanerochaete chrysosporium. Process Biochem. 40: 1923–1929.

    Article  CAS  Google Scholar 

  28. Wang, P., X. Hu, S. Cook, M. Begonia, K. S. Lee, and H. M. Hwang (2008) Effect of culture conditions on the production of ligninolytic enzymes by white rot fungi Phanerochaete chrysosporium (ATCC 20696) and separation of its lignin peroxidase. World J. Microbiol. Biotechnol. 24: 2205–2212.

    Article  Google Scholar 

  29. **ong, X., X. Wen, Y. Bai, and Y. Qian (2008) Effects of culture conditions on ligninolytic enzymes and protease production by Phanerochaete chrysosporium in air. J. Environ. Sci. 20: 94–100.

    Article  CAS  Google Scholar 

  30. Singh, D., J. Zeng, and S. Chen (2011) Increasing manganese peroxidase productivity of Phanerochaete chrysosporium by optimizing carbon sources and supplementing small molecules. Letts. Appl. Microbiol. 53: 120–123.

    Article  CAS  Google Scholar 

  31. Gill, P. and D. Arora (2003) Effect of culture conditions on manganese peroxidase production and activity by some white rot fungi. J. Ind. Microbiol. Biotechnol. 30: 28–33.

    CAS  Google Scholar 

  32. Thakkar, A. P., V. S. Dhamankar, and B. P. Kapadnis (2006) Biocatalytic decolourisation of molasses by Phanerochaete chrysosporium. Bioresour. Technol. 97: 1377–1381.

    Article  CAS  Google Scholar 

  33. Jiang, F., P. Kongsaeree, R. Charron, C. Lajoie, H. Xu, G. Scott, and C. Kelly (2008) Production and separation of manganese peroxidase from heme amended yeast cultures. Biotechnol. Bioeng. 99: 540–549.

    Article  CAS  Google Scholar 

  34. Singh, D. and S. Chen (2008) The white-rot fungus Phanerochaete chrysosporium: Conditions for the production of lignindegrading enzymes. Appl. Microbiol. Biotechnol. 81: 399–417.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Medicherla Krishna Mohan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varshney, A.K., Mohan, M.K., Vidyarthi, A.S. et al. Statistical optimization of medium components to increase the manganese peroxidase productivity by Phanerochaete chrysosporium NCIM 1197. Biotechnol Bioproc E 18, 1176–1184 (2013). https://doi.org/10.1007/s12257-013-0233-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-013-0233-4

Keywords

Navigation