Log in

Heterogeneity of microbial community structures inside the up-flow biological activated carbon (BAC) filters for the treatment of drinking water

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Filtration using biological activated carbon (BAC) performs well in the removal of biodegradable dissolved organic carbon from water sources. The application of ozonation followed by up-flow BAC filtration has gained increasing attention in the world scale. In this study, a pilotscale up-flow BAC filtration system was constructed for the treatment of polluted lake water. The operational results indicated that this BAC filtration system could effectively remove organic matter. Spatial heterogeneity of the microbial community structure inside the BAC filtration system was identified using bacterial 16S rRNA clone library analysis. A marked decrease of microbial diversity in the BAC filtration system was observed along the flow path. Alphaproteobacteria, Gammaproteobacteria and Acidobacteria were found to be the major bacterial groups in the BAC filters. Moreover, Novosphingobium aromaticivorans-like microorganisms were detected. This work might add some new insights towards microbial communities in regards to BAC filtration for the treatment of drinking water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Magic-Knezev, A. and D. van der Kooij (2004) Optimisation and significance of ATP analysis for measuring active biomass in granular activated carbon filters used in water treatment. Water Res. 38: 3971–3979.

    Article  CAS  Google Scholar 

  2. Boon, N., B. F. G. Pycke, M. Marzorati, and F. Hammes (2011) Nutrient gradients in a granular activated carbon biofilter drives bacterial community organization and dynamics. Water Res. 45: 6355–6361.

    Article  CAS  Google Scholar 

  3. Li, X., G. Upadhyaya, W. Yuen, J. Brown, E. Morgenroth, and L. Raskin (2010) Changes in the structure and function of microbial communities in drinking water treatment bioreactors upon addition of phosphorus. Appl. Environ. Microbiol. 76: 7473–7481.

    Article  CAS  Google Scholar 

  4. Stewart, M. H., R. L. Wolfe, and E. G. Means (1990) Assessment of bacteriological activity associated with granular carbon treatment of drinking water. Appl. Environ. Microbiol. 56: 3822–3829.

    CAS  Google Scholar 

  5. Ko, Y. S., Y. J. Lee, and S. H. Nam (2007) Evaluation of a pilot scale dual media biological activated carbon process for drinking water. Kor. J. Chem. Eng. 24: 253–260.

    Article  CAS  Google Scholar 

  6. Magic-Knezev, A., B. Wullings, and D. Van der Kooij (2009) Polaromonas and Hydrogenophaga species are the predominant bacteria cultured from granular activated carbon filters in water treatment. J. Appl. Microbiol. 107: 944–953.

    Article  Google Scholar 

  7. Niemi, R. M., I. Heiskanen, R. Heine, and J. Rapala (2009) Previously uncultured β-Proteobacteria dominate in biologically active granular activated carbon (BAC) filters. Water Res. 43: 5075–5086.

    Article  CAS  Google Scholar 

  8. Kasuga, I., D. Shimazaki, and S. Kunikane (2007) Influence of backwashing on the microbial community in a biofilm developed on biological activated carbon used in a drinking water treatment plant. Water Sci. Technol. 55: 173–180.

    CAS  Google Scholar 

  9. Soonglerdsongpha, S., I. Kasuga, F. Kurisu, and H. Furumai (2011) Comparison of assimilable organic carbon removal and bacterial community structures in biological activated carbon process for advanced drinking water treatment plant. Sustain. Environ. Res. 21: 59–64.

    CAS  Google Scholar 

  10. Pang, C. M. and W. T. Liu (2006) Biological filtration limits carbon availability and affects downstream biofilm formation and community structure. Appl. Environ. Microbiol. 72: 5702–5712.

    Article  CAS  Google Scholar 

  11. Simpson, D. R. (2008) Biofilm processes in biologically active carbon water purification. Water Res. 42: 2839–2848.

    Article  CAS  Google Scholar 

  12. China Environmental Protection Agency (2002) Methods for water and wastewater determination. China Environmental Science Press, Bei**g.

    Google Scholar 

  13. Huang, Y., L. Zou, S. Y. Zhang, and S. G. **e (2011) Comparison of bacterioplankton communities in three heavily polluted streams in China. Biomed. Environ. Sci. 24: 140–145.

    Google Scholar 

  14. Wang, Q. F., S. Y. Zhang, L. Zou, and S. G. **e (2011) Impact of anthracene addition on microbial community structure in soil microcosms from contaminated and uncontaminated sites. Biomed. Environ. Sci. 24: 543–549.

    CAS  Google Scholar 

  15. Schloss, P. D. and J. Handelsman (2005) Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl. Environ. Microbiol. 71: 1501–1506.

    Article  CAS  Google Scholar 

  16. Wang, Q., G. M. Garrity, J. M. Tiedje, and J. R. Cole (2007) Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73: 5261–5267.

    Article  CAS  Google Scholar 

  17. **e, S. G., W. M. Sun, C. L. Luo, and A. M. Cupples (2010) Stable isotope probing identifies novel m-xylene degraders in soil microcosms from contaminated and uncontaminated sites. Water Air Soil Pollut. 212: 113–122.

    Article  CAS  Google Scholar 

  18. Moll, D. M., R. S. Summers, and A. Breen (1998) Microbial characterization of biological filters used for drinking water treatment. Appl. Environ. Microbiol. 64: 2755–2759.

    CAS  Google Scholar 

  19. Vaz-Moreira, I., O. C. Nunes, and C. M. Manaia (2011) Diversity and antibiotic resistance patterns of Sphingomonadaceae isolates from drinking water. Appl. Environ. Microbiol. 77: 5697–5706.

    Article  CAS  Google Scholar 

  20. Inoue, D., S. Hara, M. Kashihara, Y. Murai, E. Danzl, K. Sei, S. Tsunoi, M. Fujita, and M. Ike (2008) Degradation of Bis(4-Hydroxyphenyl)methane (bisphenol F) by Sphingobium yanoikuyae strain FM-2 isolated from river water. Appl. Environ. Microbiol. 74: 352–358.

    Article  CAS  Google Scholar 

  21. Padgett, K. A., C. Selmi, T. P. Kenny, P. S. C. Leung, D. L. Balkwill, A. A. Ansari, R. L. Coppel, and M. E. Gershwin (2005) Phylogenetic and immunological definition of four lipoylated proteins from Novosphingobium aromaticivorans, implications for primary biliary cirrhosis. J. Autoimmun. 24: 209–219.

    Article  CAS  Google Scholar 

  22. Bogdanos, D. P. and D. Vergani (2009) Bacteria and primary biliary cirrhosis. Clin. Rev. Allergy Immunol. 36: 30–39.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuguang **e.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liao, X., Chen, C., Chang, CH. et al. Heterogeneity of microbial community structures inside the up-flow biological activated carbon (BAC) filters for the treatment of drinking water. Biotechnol Bioproc E 17, 881–886 (2012). https://doi.org/10.1007/s12257-012-0127-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-012-0127-x

Keywords

Navigation