Log in

Long Noncoding RNAs in Colorectal Adenocarcinoma; an in silico Analysis

  • Original Article
  • Published:
Pathology & Oncology Research

Abstract

Long noncoding RNAs (lncRNAs) are lengthy noncoding transcripts which are involved in critical signaling pathways including cell cycle and apoptosis so it is not surprising to see their altered expression in human tumors. Colorectal adenocarcinoma is one the most frequent malignancies worldwide. The role of lncRNAs in colorectal adenocarcinoma is not well understood. To study the significance of lncRNAs in colorectal adenocarcinoma, we retrieved 189 approved lncRNAs from HGNC. The genes were imported into the cBioPortal database for transcriptomic analyses. We queried all the samples from TCGA provisional colorectal adenocarcinoma with RNA-seq v2 data in our study and considered RNA dysregulation with Z-score: ±2. The lncRNA which was altered in most of the patients were considered as “significant lncRNA” for further analyses. We considered the association of candidate lncRNAs with clinicopathologic parameters of samples including tumor disease anatomic site, neoplasm histologic types, tumor stage and survival. We also compute the specificity of the significant lncRNAs expression in colorectal adenocarcinoma comparing with other human cancers in cancer portal. Our analysis showed that lncRNAs SNHG6, PVT1 and ZFAS1 allocated the maximum alteration among the colorectal cases. The expression of SNHG6 and ZFAS1 was more in rectal adenocarcinoma than the colon carcinoma while the PVT1 showed the same expression levels in both tissues. However, we found that upregulation of PVT1 has been reduced the overall survival in patients. Altogether these data showed SNHG6, PVT1 and ZFAS1, are promising candidates for experimental research on colorectal adenocarcinoma to discover novel biomarker for this prevalent cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ge X, Chen Y, Liao X, Liu D, Li F, Ruan H, Jia W (2013) Overexpression of long noncoding RNA PCAT-1 is a novel biomarker of poor prognosis in patients with colorectal cancer. Med Oncol 30:588. https://doi.org/10.1007/s12032-013-0588-6

    Article  CAS  PubMed  Google Scholar 

  2. Hrasovec S, Glavac D (2012) MicroRNAs as Novel Biomarkers in Colorectal Cancer. Front Genet 3:180. https://doi.org/10.3389/fgene.2012.00180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cheetham SW, Gruhl F, Mattick JS, Dinger ME (2013) Long noncoding RNAs and the genetics of cancer. Br J Cancer 108:2419–2425. https://doi.org/10.1038/bjc.2013.233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gibb EA, Brown CJ, Lam WL (2011) The functional role of long non-coding RNA in human carcinomas. Mol Cancer 10:38. https://doi.org/10.1186/1476-4598-10-38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Struhl K (2007) Transcriptional noise and the fidelity of initiation by RNA polymerase II. Nat Struct Mol Biol 14:103–105. https://doi.org/10.1038/nsmb0207-103

    Article  CAS  PubMed  Google Scholar 

  6. Gutschner T, Diederichs S (2012) The hallmarks of cancer: a long non-coding RNA point of view. RNA Biol 9:703–719. https://doi.org/10.4161/rna.20481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Huang Y, Liu N, Wang JP, Wang YQ, Yu XL, Wang ZB, Cheng XC, Zou Q (2012) Regulatory long non-coding RNA and its functions. J Physiol Biochem 68:611–618. https://doi.org/10.1007/s13105-012-0166-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Costa FF (2010) Non-coding RNAs: Meet thy masters. Bioessays 32:599–608. https://doi.org/10.1002/bies.200900112

    Article  CAS  PubMed  Google Scholar 

  9. Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B, Regev A, Rinn JL (2011) Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev 25:1915–1927. https://doi.org/10.1101/gad.17446611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E, Antipin Y, Reva B, Goldberg AP, Sander C, Schultz N (2012) The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2:401–404. https://doi.org/10.1158/2159-8290.CD-12-0095

    Article  PubMed  Google Scholar 

  11. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, Sun Y, Jacobsen A, Sinha R, Larsson E, Cerami E, Sander C, Schultz N (2013) Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 6:pl1. https://doi.org/10.1126/scisignal.2004088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shahrisa A, Tahmasebi Birmani M (2017) cbaf: Multiple automated functions for cbioportal.org. R package version 1.0.2. https://doi.org/10.18129/B9.bioc.cbaf

  13. Petryszak R, Keays M, Tang YA, Fonseca NA, Barrera E, Burdett T, Fullgrabe A, Fuentes AM, Jupp S, Koskinen S, Mannion O, Huerta L, Megy K, Snow C, Williams E, Barzine M, Hastings E, Weisser H, Wright J, Jaiswal P, Huber W, Choudhary J, Parkinson HE, Brazma A (2016) Expression Atlas update--an integrated database of gene and protein expression in humans, animals and plants. Nucleic Acids Res 44:D746–D752. https://doi.org/10.1093/nar/gkv1045

    Article  CAS  PubMed  Google Scholar 

  14. Petryszak R, Burdett T, Fiorelli B, Fonseca NA, Gonzalez-Porta M, Hastings E, Huber W, Jupp S, Keays M, Kryvych N, McMurry J, Marioni JC, Malone J, Megy K, Rustici G, Tang AY, Taubert J, Williams E, Mannion O, Parkinson HE, Brazma A (2014) Expression Atlas update--a database of gene and transcript expression from microarray- and sequencing-based functional genomics experiments. Nucleic Acids Res 42:D926–D932. https://doi.org/10.1093/nar/gkt1270

    Article  CAS  PubMed  Google Scholar 

  15. Kapushesky M, Adamusiak T, Burdett T, Culhane A, Farne A, Filippov A, Holloway E, Klebanov A, Kryvych N, Kurbatova N, Kurnosov P, Malone J, Melnichuk O, Petryszak R, Pultsin N, Rustici G, Tikhonov A, Travillian RS, Williams E, Zorin A, Parkinson H, Brazma A (2012) Gene Expression Atlas update--a value-added database of microarray and sequencing-based functional genomics experiments. Nucleic Acids Res 40:D1077–D1081. https://doi.org/10.1093/nar/gkr913

    Article  CAS  PubMed  Google Scholar 

  16. Consortium GT (2015) Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348:648–660. https://doi.org/10.1126/science.1262110

    Article  CAS  Google Scholar 

  17. Yuan J, Wu W, **e C, Zhao G, Zhao Y, Chen R (2013) NPInter v2. 0: an updated database of ncRNA interactions. Nucleic Acids Res 42:D104–D108

    Article  PubMed  PubMed Central  Google Scholar 

  18. Schmitt AM, Chang HY (2016) Long Noncoding RNAs in Cancer Pathways. Cancer Cell 29:452–463. https://doi.org/10.1016/j.ccell.2016.03.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Thorenoor N, Faltejskova-Vychytilova P, Hombach S, Mlcochova J, Kretz M, Svoboda M, Slaby O (2016) Long non-coding RNA ZFAS1 interacts with CDK1 and is involved in p53-dependent cell cycle control and apoptosis in colorectal cancer. Oncotarget 7:622–637. https://doi.org/10.18632/oncotarget.5807

    Article  PubMed  Google Scholar 

  20. Wang W, **ng C (2016) Upregulation of long noncoding RNA ZFAS1 predicts poor prognosis and prompts invasion and metastasis in colorectal cancer. Pathol Res Pract 212:690–695. https://doi.org/10.1016/j.prp.2016.05.003

    Article  CAS  PubMed  Google Scholar 

  21. Picelli S, Vandrovcova J, Jones S, Djureinovic T, Skoglund J, Zhou XL, Velculescu VE, Vogelstein B, Lindblom A (2008) Genome-wide linkage scan for colorectal cancer susceptibility genes supports linkage to chromosome 3q. BMC Cancer 8:87. https://doi.org/10.1186/1471-2407-8-87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kemp Z, Carvajal-Carmona L, Spain S, Barclay E, Gorman M, Martin L, Jaeger E, Brooks N, Bishop DT, Thomas H, Tomlinson I, Papaemmanuil E, Webb E, Sellick GS, Wood W, Evans G, Lucassen A, Maher ER, Houlston RS, ColoRectal tumour Gene Identification Study C (2006) Evidence for a colorectal cancer susceptibility locus on chromosome 3q21-q24 from a high-density SNP genome-wide linkage scan. Hum Mol Genet 15:2903–2910. https://doi.org/10.1093/hmg/ddl231

    Article  CAS  PubMed  Google Scholar 

  23. Guo K, Yao J, Yu Q, Li Z, Huang H, Cheng J, Wang Z, Zhu Y (2017) The expression pattern of long non-coding RNA PVT1 in tumor tissues and in extracellular vesicles of colorectal cancer correlates with cancer progression. Tumour Biol 39:1010428317699122. https://doi.org/10.1177/1010428317699122

    Article  CAS  PubMed  Google Scholar 

  24. Kawai M, Komiyama H, Hosoya M, Okubo H, Fujii T, Yokoyama N, Sato C, Ueyama T, Okuzawa A, Goto M, Kojima Y, Takahashi M, Sugimoto K, Ishiyama S, Munakata S, Ogura D, Niwa SI, Tomiki Y, Ochiai T, Sakamoto K (2016) Impact of chromosome 17q deletion in the primary lesion of colorectal cancer on liver metastasis. Oncol Lett 12:4773–4778. https://doi.org/10.3892/ol.2016.5271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chen Y, Fang L, Zhang J, Li G, Ma M, Li C, Lyu J, Meng QH (2017) Blockage of Glyoxalase I Inhibits Colorectal Tumorigenesis and Tumor Growth via Upregulation of STAT1, p53, and Bax and Downregulation of c-Myc and Bcl-2. Int J Mol Sci 18:570

    Article  PubMed Central  Google Scholar 

  26. Wang W, Deng J, Wang Q, Yao Q, Chen W, Tan Y, Ge Z, Zhou J, Zhou Y (2017) Synergistic role of Cul1 and c-Myc: Prognostic and predictive biomarkers in colorectal cancer. Oncol Rep 38(1):245–252. https://doi.org/10.3892/or.2017.5671

    Article  CAS  PubMed  Google Scholar 

  27. Rodrigues NR, Rowan A, Smith M, Kerr IB, Bodmer WF, Gannon JV, Lane DP (1990) p53 mutations in colorectal cancer. Proc Natl Acad Sci 87:7555–7559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hao H, Liu L, Zhang D, Wang C, **a G, Zhong F, Hu X (2017) Diagnostic and prognostic value of miR-106a in colorectal cancer. Oncotarget 8:5038

    PubMed  Google Scholar 

  29. **ao G, Tang H, Wei W, Li J, Ji L, Ge J (2014) Aberrant expression of microRNA-15a and microRNA-16 synergistically associates with tumor progression and prognosis in patients with colorectal cancer. Gastroenterol Res Pract. https://doi.org/10.1155/2014/364549

    Article  Google Scholar 

  30. Chen H-Y, Lin Y-M, Chung H-C, Lang Y-D, Lin C-J, Huang J, Wang W-C, Lin F-M, Chen Z, Huang H-D (2012) miR-103/107 promote metastasis of colorectal cancer by targeting the metastasis suppressors DAPK and KLF4. Cancer Res 72:3631–3641

    Article  CAS  PubMed  Google Scholar 

  31. Birgani MT, Hajjari M, Shahrisa A, Khoshnevisan A, Shoja Z, Motahari P, Farhangi B (2017) Long Non-Coding RNA SNHG6 as a Potential Biomarker for Hepatocellular Carcinoma. Pathol Oncol Res. https://doi.org/10.1007/s12253-017-0241-3

    Article  Google Scholar 

Download references

Acknowledgements

This study was accepted at Ahvaz Jundishapur University of Medical Sciences. The authors were attributed to the manuscript as follow; HA: data collection and manuscript preparation, AS: data collection and analysis, MTB: literature review, data collection and analysis, manuscript editing, MH: manuscript preparation and revision, YTB: statistical analysis and English editing, JMA: manuscript revision.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Arman Shahrisa or Maryam Tahmasebi Birgani.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

It is an in silico analysis on recorded raw data on cancer bioportals.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ansari, H., Shahrisa, A., Birgani, Y.T. et al. Long Noncoding RNAs in Colorectal Adenocarcinoma; an in silico Analysis. Pathol. Oncol. Res. 25, 1387–1394 (2019). https://doi.org/10.1007/s12253-018-0428-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-018-0428-2

Keywords

Navigation