Log in

Cellular and Molecular Mechanisms in the Two Major Forms of Inflammatory Bowel Disease

  • Review
  • Published:
Pathology & Oncology Research

Abstract

The factors involved in the pathogenesis of Crohn’s disease and ulcerative colitis, the two major types of inflammatory bowel disease (IBD) are summarized. Intestinal antigens composed of bacterial flora along with antigen presentation and impaired mucosal barrier have an important role in the initiation of IBD. The bacterial community may be modified by the use of antibiotics and probiotics. The dentritic cells recognize the antigens by cell surface Toll like receptor and the cytoplasmic CARD/NOD system. The balance between Th1/Th2/Th17 cell populations being the source of a variety of cytokines regulates the inflammatory mechanisms and the clearance of microbes. The intracellular killing and digestion, including autophagy, are important in the protection against microbes and their toxins. The homing process determines the location and distribution of the immune cells along the gut. All these players are potential targets of pharmacological manipulation of disease status.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

APC:

antigen presenting cell

ATG16L1:

autophagy-related protein 16–1

CARD:

caspase recruitment domain-containing protein

CD:

Chron’s disease

CD:

cluster of differentiation

CDAI:

crohn’s disease activity index

CpG:

cytosine—phosphate—guanine

DC:

dendritic cell

DSS:

dextran sulphate sodium

Ebi:

Epstein-Barr virus induced gene

GALT:

gut associated lymphoid tissue

G-CSF:

granulocyte colony stimulating factor

IBD:

inflammatory bowel disease

ICAM:

intercellular adhesion molecule

IEC:

intestinal epithelial cells

Ig:

immunoglobulin

IL:

interleukin

INF:

interferon

IRGM:

immunity-related GTPase family M

KGF:

keratinocyte growth factor

KSR:

Ras-1 kinase suppressor

LFA:

lymphocyte function-associated antigen

LPS:

lipopolysaccharide

MHC:

major histocompatibility complex

MMP:

matrix metalloprotease

NADPH:

nicotinamide adenine dinucleotide phosphate

NCF4:

neutrophil cytosol factor

NF:

nuclear factor

NKT:

natural killer T cell

NLR:

NOD type receptor

NOD:

nucleotide-binding oligomerization domain protein

PAMP:

pathogen associated molecular pattern

PAR:

proteinase activated receptor

PPAR:

peroxisome proliferator activated receptor

PRR:

pattern recognition receptor

RAG:

recombination-activating gene

Ras:

rat sarcoma oncogene

SCID:

severe combined immunodeficiency

Smad:

vertebrate homologue of Mad (Mothers Against Decapentaplegic) protein

SOCS:

suppressor of cytokine signaling

STAT:

signal transducers and activators of transcription

TGF:

transforming growth factor

Th:

T helper

TLR:

toll-like receptor

TNBA:

trinitrobenzoic acid

TNF:

tumor necrosis factor

TNFR:

TNF receptor

TRC:

T cell receptor

UC:

ulcerative colitis

VCAM:

vascular cell adhesion molecule

References

  1. Tresca AJ (2009) Differences Between Ulcerative Colitis and Crohn’s Disease. In: About.com: Health. http://ibdcrohns.about.com/od/ulcerativecolitis/a/diffuccd.htm. Cited 16. Jun 2010

  2. Balfour SR (2001) Induction of mucosal immune responses by bacteria and bacterial components. Curr Opin Gastroenterol 17:555–561

    Article  Google Scholar 

  3. Mai V, Morris JG (2004) Colonic bacterial flora: changing understandings in the molecular age. J Nutr 134:459–464

    PubMed  CAS  Google Scholar 

  4. Wilson KH (2002) Natural biota of the human gastrointestinal tract. In: Blaser MJ, Smith PD, Ravdin JI (eds) gastrointestinal tract. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  5. Danese S, Sans M, Fiocchi C (2004) Inflammatory bowel disease: the role of environmental factors. Autoimmun Rev 3:394–400

    Article  PubMed  CAS  Google Scholar 

  6. Cong Y, Weaver CT, Lazenby A et al (2002) Bacterial-reactive T regulatory cells inhibit pathogenic immune responses to the enteric flora. J Immunol 169:6112–6119

    PubMed  CAS  Google Scholar 

  7. Bai PA, Ouyang Q (2006) Probiotics and inflammatory bowel disease. Postgrad Med J 82:376–382

    Article  PubMed  CAS  Google Scholar 

  8. Groux H, O'Garra A, Bigler M et al (1997) A CD4+ T-cell subset inhibits antigen specific T-cell responses and prevents colitis. Nature 389:737–742

    Article  PubMed  CAS  Google Scholar 

  9. Abbas AK, Murphy KM, Sher A (1996) Functional diversity of helper T lymphocytes. Nature 383:787–793

    Article  PubMed  CAS  Google Scholar 

  10. Boirivant M, Marini M, Di Felice G et al (1999) Lamina propria T-cells in Crohn’s disease and other gastrointestinal inflammation show defective CD2 pathway-induced apoptosis. Gastroenterology 116:557–565

    Article  PubMed  CAS  Google Scholar 

  11. Bu P, Keshavarzian A, Stone DD et al (2001) Apoptosis:one of the mechanisms that maintains unresponsivness of the intestinal mucosal immune system. J Immunol 166:6399–6403

    PubMed  CAS  Google Scholar 

  12. Nagler-Anderson C, Bober LA, Robinson ME et al (1986) Suppression of type II collagen- induced arthritis by intragastric administration of soluble type II. collagen. Proc Natl Acad Sci USA 83:7443–7446

    Article  PubMed  CAS  Google Scholar 

  13. Higgins PJ, Weiner HL (1988) Suppression of experimental encephalomyelitis by oral administration of myelin basic protein and its fragments. J Immunol 140:440–445

    PubMed  CAS  Google Scholar 

  14. Vrabec TR, Gregerson DS, Dua HS et al (1992) Inhibition of experimental autoimmun uveoretinitis by oral administration by oral administration of S-antigen and syntetic peptides. Autoimmunity 12:175–184

    Article  PubMed  CAS  Google Scholar 

  15. Neurath MF, Fuss I, Kelsall BL et al (2004) Experimental granulomatous colitis in mice abrogated by induction of TGF-β mediated oral tolerance. J Exp Med 183:2605–2616

    Article  Google Scholar 

  16. Kraus TA, Toy L, Chan L et al (2004) Failure to induce oral tolerance in Crohn’s disease and ulcerative colitis patients: posible genetic risk. Ann NY Acad Sci 1029:225–238

    Article  PubMed  CAS  Google Scholar 

  17. Ilian Y (2004) Oral immune ragulation toward disease-assiciated antigens: results of phase I clinical trials in Crohn’s disease and chronic hepatitis. Ann NY Acad Sci 1029:286–298

    Article  Google Scholar 

  18. Hart AL, Stagg AJ, Kamm MA (2003) Use of probiotics in the treatment of inflammatory bowel disease. J Clin Gastroenterol 36:111–119

    Article  PubMed  Google Scholar 

  19. Niess JH (2008) Role of mucosal dendritic cells in inflammatory bowel disease. World J Gastroenterol 14:5138–5148

    Article  PubMed  CAS  Google Scholar 

  20. Coombes JL, Maloy KJ (2007) Control of intestinal homeostasis by regulatory T-cells and dendritic cells. Semin Immunol 19:116–126

    Article  PubMed  CAS  Google Scholar 

  21. Iwasaki A, Kelsall BL (2001) Unique functions of CD11b+, CD8 alpha+, and double-negative Peyer’s patch dendritic cells. J Immunol 166:4884–4890

    PubMed  CAS  Google Scholar 

  22. Hart AL, Lammers K, Brigidi P et al (2004) Modulation of human dendritic cell phenotype and function by probiotic bacteria. Gut 53:1602–1609

    Article  PubMed  CAS  Google Scholar 

  23. Macpherson AJ, Uhr T (2004) Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science 303:1662–1665

    Article  PubMed  CAS  Google Scholar 

  24. Mora JR, Bono MR, Manjunath N et al (2003) Selective imrprinting of gut-homing T cells by Peyer’s patch dendritic cells. Nature 424:88–93

    Article  PubMed  CAS  Google Scholar 

  25. Kra**a T, Leithäuser F, Möller P et al (2003) Colonic lamina propria dendritic cells in mice with CD4+ T cell-induced colitis. Eur J Immunol 33:1073–1083

    Article  PubMed  CAS  Google Scholar 

  26. Bell SJ, Rigby R, English N et al (2001) Migration and maturation of human colonic dendritic cells. J Immunol 166:4958–4967

    PubMed  CAS  Google Scholar 

  27. Rimoldi M, Chieppa M, Salucci V et al (2005) Intestinal immun homeostasis is regulated by the crosstalk between epithelial cells and dendritic cells. Nat Immunol 6:507–514

    Article  PubMed  CAS  Google Scholar 

  28. Xavier RJ, Podolsky DK (2007) Unravelling the pathogenesis of inflammatory bowel disease. Nature 448:427–434

    Article  PubMed  CAS  Google Scholar 

  29. Suzuki M, Hisamatsu T, Podolsky DK (2003) Gamma interferon augments the intracellular pathway for lipopolysaccahride (LPS) recognition in human intestinal epithelial cells through coordinated upregulation of LPS uptake and expression of the intracellular Tolle-like receptor 4-MD-2 complex. Infect Immun 71:3503–3511

    Article  PubMed  CAS  Google Scholar 

  30. Ortega-Cava CF, Ishihara S, Rumi MA et al (2003) Strategic compertmentalization of toll-like receptor 4 in the mouse gut. J Immunol 170:3977–3985

    PubMed  CAS  Google Scholar 

  31. Abreu MT, Vora P, Faure E et al (2001) Decreased expression of Toll-like receptor-4 and MD-2 correlates with intestinal epithelial cell protection adainst dysregulated proinflammatory gene expression in response to bacterial lipopolysaccharide. J Immunol 167:1609–1616

    PubMed  CAS  Google Scholar 

  32. Cario E, Podolsky DK (2000) Differencial alteration in intestinal epithelial cell expression of toll like receptor 3 (TLR3) and TLR4 in inflammatory bowel disease. Infect Immun 68:7010–7017

    Article  PubMed  CAS  Google Scholar 

  33. Dubuquoy L, Jansson EA, Deeb S et al (2003) Impaired expression of peroxisome proliferator-activated receptor gamma in ulcerative colitis. Gastroenterology 124:1265–1276

    Article  PubMed  CAS  Google Scholar 

  34. Frolova L, Drastich P, Rossmann P et al (2008) Expression of Toll-like receptor 2 (TLR2), TLR4, and CD14 in biopsy samples of patients with inflammatory bowel diseases: upregulated expression of TLR2 in terminal ileum of patients with ulcerative colitis. Histochem Cytochem 56:267–274

    Article  CAS  Google Scholar 

  35. Lakatos PL, Kiss LS, Palatka K et al (2011) Serum lipopolysaccharide-binding protein and soluble CD14 are markers of disease activity in patients with Crohn’s disease. Inflamm Bowel Dis 17:767–777

    Article  PubMed  Google Scholar 

  36. Trinchieri G (2003) Interleukin-12 and regulation of innate resistance and adaptive immunity. Nat Rev Immunol 3:133–146

    Article  PubMed  CAS  Google Scholar 

  37. Mosmann TR, Cherwinski H, Bond MW et al (1986) Two types of murine helper T cell clone. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 136:2348–2357

    PubMed  CAS  Google Scholar 

  38. Hayashi F, Smith KD, Ozinsky A et al (2001) The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410:1099–1103

    Article  PubMed  CAS  Google Scholar 

  39. Papp M, Altorjay I, Norman GL et al (2007) Seroreactivity to microbial components in Crohn’s disease is associated with ileal involvement, noninflammatory disease behavior and NOD2/CARD15 genotype, but not with risk for surgery in a Hungarian cohort of IBD patients. Inflamm Bowel Dis 13:984–992

    Article  PubMed  Google Scholar 

  40. Abreu MT, Taylor KD, Lin YC et al (2002) Mutations in NOD2 are associated with fibrostenosing disease in patients with Crohn’s disease. Gastroenterology 123:679–688

    Article  PubMed  CAS  Google Scholar 

  41. Szamosi T, Lakatos PL; Hungarian IBD Study Group et al (2009) The 3′UTR NFKBIA variant is associated with extensive colitis in Hungarian IBD patients. Dig Dis Sci 54:351–359

    Article  Google Scholar 

  42. Hugot JP, Chamaillard M, Zouali H et al (2001) Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature 411:599–603

    Article  PubMed  CAS  Google Scholar 

  43. Chamaillard M, Philpott D, Girardin SE (2003) Gene enviroment interaction modulated by allelic heterogenety in inflammatory bowel diseases. Proc Natl Acad Sci USA 100:3455–3460

    Article  PubMed  CAS  Google Scholar 

  44. Hugot J-P (2006) CARD15/NOD2 mutations in Crohn’s disease. Ann NY Acad Sci 1072:9–18

    Article  PubMed  CAS  Google Scholar 

  45. Abreu MT, Arnold ET, Thomas LS et al (2002) TLR4 and MD-2 expression is regulated by immune medaited signals in human epithelial cells. J Biol Chem 277:20431–20437

    Article  PubMed  CAS  Google Scholar 

  46. Weigmann B, Nemetz A, Becker C et al (2004) A critical regulatory role of leucin zipper transcription factor c-Maf in Th1-mediated experimental colitis. J Immunol 173:3446–3455

    PubMed  CAS  Google Scholar 

  47. Elson CO, Cong Y, Iqbal N et al (2001) Immuno-bacterial homeostasis in gut: new insight into the old enigma. Semin Immunol 13:187–194

    Article  PubMed  CAS  Google Scholar 

  48. Boirivant M, Fuss IJ, Chu A et al (1998) Oxazolone colitis: a murine model of T helper cell type 2 colitis treatable with antibodies to interleukin 4. J Exp Med 188:1929–1939

    Article  PubMed  CAS  Google Scholar 

  49. Maeda S, Hsu LC, Liu H et al (2005) Nod2 mutation in Crohn’s disease potentiates NF-kappaB activity and IL-1beta processing. Science 307:734–738

    Article  PubMed  CAS  Google Scholar 

  50. Girardin SE, Boneca IG, Carneiro LA et al (2003) Nod1 detects a unique muropeptide from gram-negative bacterial peptidoglycan. Science 300:1584–1587

    Article  PubMed  CAS  Google Scholar 

  51. Lala S, Ogura Y, Osborne C et al (2003) Crohn’s disease and the NOD2 gene: a role for paneth cells. Gastroenterology 125:47–57

    Article  PubMed  CAS  Google Scholar 

  52. Ramasundara M, Leach ST, Lemberg DA, Day AS (2009) Defensins and inflammation: the role of defensins in inflammatory bowel disease. J Gastroenterol Hepatol 24:202–208

    Article  PubMed  CAS  Google Scholar 

  53. Inohara N, Ogura Y, Fontalba A et al (2003) Host recognition of bacterial muramyl dipeptide mediated through NOD2. Implications for Crohn’s disease. J Biol Chem 278:5509–5512

    Article  PubMed  CAS  Google Scholar 

  54. Berrebi D, Maudinas R, Hugot JP et al (2003) Card15 gene overexpression in mononuclear and epithelial cells of the inflammed Crohn’s disease colon. Gut 52:840–846

    Article  PubMed  CAS  Google Scholar 

  55. Hisamatsu T, Suzuki M, Reinecker HC (2003) CARD15/NOD2 functions as an antibacterial factor in human intestinal epithelial cells. Gastroenterology 24:1001–1009

    Google Scholar 

  56. Brimnes J, Reimann J, Nissen M et al (2001) Enteric bacterial antigens activate CD4(+) T cells from scid mice with inflammatory bowel disease. Eur J Immunol 31:23–31

    Article  PubMed  CAS  Google Scholar 

  57. Peluso I, Pallone F, Monteleone G (2006) Interleukin-12 and Th1 immune response in Crohn’s disease: pathogenetic relevance and therapeutic implication. World J Gastroenterol 12:5606–5610

    PubMed  CAS  Google Scholar 

  58. Neurath MF, Weigmann B, Finotto S et al (2002) The transcription factor T-bet regulates mucosal T cell activation in experimental colitis and Cronh’s disease. J Exp Med 195:1129–1143

    Article  PubMed  CAS  Google Scholar 

  59. Afkarian M, Sedy JR, Yang J et al (2002) T-bet is a STAT1-induced regulator of IL-12R expression in naïve CD4+ T cells. Nat Immunol 3:506–508

    Article  Google Scholar 

  60. Heller F, Fuss IJ, Nieuwenhuis EE et al (2002) Oxazolone colitis, a Th2 colitis model resembling ulcerative colitis, is mediated by IL-13-producing NK-T cells. Immunity 17:629–638

    Article  PubMed  CAS  Google Scholar 

  61. Pastorelli L, Garg RR, Hoang SB et al (2010) Epithelial-derived IL-33 and its receptor ST2 are dysregulated in ulcerative colitis and in experimental Th1/Th2 driven enteritis. Proc Natl Acad Sci U S 107:8017–8022

    Article  CAS  Google Scholar 

  62. Levy DE, Lee CK (2002) What does Stat3 do? J Clin Invest 109:1143–1148

    PubMed  CAS  Google Scholar 

  63. Mudter J, Weigmann B, Bartsch B et al (2005) Activation pattern of signal transducer and activators of transcription (STAT) factors in inflammatory bowel diseases. Am J Gastroenterol 100:64–72

    Article  PubMed  CAS  Google Scholar 

  64. Shull MM, Ormsby I, Kier AB et al (1992) Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature 359:693–699

    Article  PubMed  CAS  Google Scholar 

  65. Babyatsky MW, Rossiter G, Podolsky DK (1996) Expression of transforming growth factors alpha and beta in colonic mucosa in inflammatory bowel disease. Gastroenterology 110:975–984

    Article  PubMed  CAS  Google Scholar 

  66. Yamaguchi T, Ihara K, Matsumoto T et al (2001) Inflammatory bowel disease-like colitis in glycogen storage disease type 1b. Inflamm Bowel Dis 7:128–132

    Article  PubMed  CAS  Google Scholar 

  67. Weaver CT, Hatton RD, Mangan PR et al (2007) IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annu Rev Immunol 25:851–852

    Article  Google Scholar 

  68. Kastelein RA, Hunter CA, Cua DJ (2007) Discovery and biology of IL-23 and IL-27: related but functionally distinct regulators of inflammation. Annu Rev Immunol 25:221–242

    Article  PubMed  CAS  Google Scholar 

  69. Ivanov II, McKenzie BS, Zhou L et al (2006) The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126:1121–1133

    Article  PubMed  CAS  Google Scholar 

  70. Langrish CL, Chen Y, Blumenschein WM et al (2005) IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 201:233–240

    Article  PubMed  CAS  Google Scholar 

  71. Zhou L, Lopes JE, Chong MM et al (2008) TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function. Nature 453:236–240

    Article  PubMed  CAS  Google Scholar 

  72. Shen W, Durum SK (2010) Synergy of IL-23 and Th17 cytokines: new light on inflammatory bowel disease. Neurochem Res 35:940–946

    Article  PubMed  CAS  Google Scholar 

  73. Bettelli E, Oukka M, Kuchroo VK (2007) TH-17 cells in the circle of immunity and autoimmunity. Nat Immunol 8:345–350

    Article  PubMed  CAS  Google Scholar 

  74. Kinugasa T, Sakaguchi T, Gu X et al (2000) Claudins regulate the intestinal barrier in response to immune mediators. Gastroenterology 118:1001–1011

    Article  PubMed  CAS  Google Scholar 

  75. Rioux JD, Xavier RJ, Taylor KD et al (2007) Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat Genet 39:596–604

    Article  PubMed  CAS  Google Scholar 

  76. Ellson CD, Davidson K, Ferguson GJ et al (2006) Neutrophils from p40phox2/2 mice exhibit severe defects in NADPH oxidase regulation and oxidant-dependent bacterial killing. J Exp Med 203:1927–1937

    Article  PubMed  CAS  Google Scholar 

  77. Ogawa M, Yoshimori T, Suzuki T, Sagara H et al (2004) Escape of intracellular Shigella from autophagy. Science 307:727–731

    Article  PubMed  Google Scholar 

  78. Lakatos PL, Szamosi T, Szilvasi A et al (2008) ATG16L1 and IL23 receptor (IL23R) genes are associated with disease susceptibility in Hungarian CD patients. Dig Liver Dis 40:867–873

    Article  PubMed  CAS  Google Scholar 

  79. Hampe J, Franke A, Rosenstiel P et al (2007) A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat Genet 39:207–211

    Article  PubMed  CAS  Google Scholar 

  80. Parkes M, Barrett JC, Prescott NJ et al (2007) Sequence variants in the autophagy gene IRGM and multiple other replicating loci contribute to Crohn’s disease susceptibility. Nat Genet 39:830–832

    Article  PubMed  CAS  Google Scholar 

  81. Singh SB, Davis AS, Taylor G et al (2006) IRGM induces autophagy to eliminate intracellular mycobacteria. Science 313:1438–1441

    Article  PubMed  CAS  Google Scholar 

  82. Taylor GA (2007) IRG proteins: key mediators of interferon-regulated host resistance to intracellular pathogens. Cell Microbiol 9:1099–1107

    Article  PubMed  CAS  Google Scholar 

  83. Mäkitalo L, Kolho KL, Karikoski R et al (2010) Expression profiles of matrix metalloproteinases and their inhibitors in colonic inflammation related to pediatric inflammatory bowel disease. Scand J Gastroenterol 45:862–871

    Article  PubMed  Google Scholar 

  84. Salmi M, Andrew DP, Butcher EC et al (1995) Dual binding capacity of mucosal immunoblasts to mucosal and synovial endothelium in humans: dissection of the molecular mechanisms. J Exp Med 181:137–149

    Article  PubMed  CAS  Google Scholar 

  85. Bernstein CN, Sargent M, Rector E (2002) Alteration in expression of beta 2 integrins on lamina propria lymphocytes in ulcerative colitis and Crohn’s disease. Clin Immunol 104:67–72

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andras Falus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bene, L., Falus, A., Baffy, N. et al. Cellular and Molecular Mechanisms in the Two Major Forms of Inflammatory Bowel Disease. Pathol. Oncol. Res. 17, 463–472 (2011). https://doi.org/10.1007/s12253-011-9397-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-011-9397-4

Keywords

Navigation