Log in

Screening of Selective C16 to C18 Lipids and Process Optimization Based on Design of Experiments in Formulating Solid Lipid Microparticles by Twin Screw Hot Melt Dispersion Process

  • Original Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

Purpose

Long-acting solid lipid microparticles of tetracycline hydrochloride (TH) were prepared using solvent-free twin screw hot melt dispersion technique utilizing biocompatible lipids. Design of experiments was employed to assess the formulation and process parameters followed by statistical analysis.

Methods

Plackett–Burman design generated 12 experiments containing varying ratios of lipids and TH (1:2 to 1:8). Compatibility studies by DSC were conducted on these physical mixtures of drug: lipids to check interactions and obtain an indication of lipids melting range. Microparticles were fabricated and evaluated for flow properties, particle size distribution, surface morphology, drug content, percent entrapment efficiency (PDE), and drug diffusion studies. Impact of critical process parameters on responses like throughput and specific mechanical energy consumption (SMEC) was evaluated using central composite design (CCD).

Results

DSC study confirmed compatibility of selected C16 to C18 lipids. Microscopic analysis enabled understanding changes in surface morphology pre- and post-diffusion. Lipid compositions and ratios had shown impact on drug diffusion at 2 h and 72 h. PDE was directly linked to TH: lipid ratio in the formulations. Stability of the microparticles was confirmed by assay and XRD and FTIR analysis on selected formulations.

Conclusion

Stearic acid and hydrogenated castor oil revealed significant impact on drug diffusion and micromeritic properties, respectively. Low feed rates and high screw speeds led to increase in SMEC. Morphology of melt agglomerates was controlled by varying the feed rates. Microparticles with anticipated particle size and diffusion profiles were achieved with the outlined process, which were deemed suitable to administer inside periodontal cavities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Slots J, Ting M. Systemic antibiotics in the treatment of periodontal disease. Periodontol. 2000;28:106–76. https://doi.org/10.1034/j.1600-0757.2002.280106.x.

    Article  Google Scholar 

  2. Nair SC, Anoop KR. Intraperiodontal pocket: An ideal route for local antimicrobial drug delivery. J Adv Pharm Technol Res. 2012;3(1):9–15. https://doi.org/10.4103/2231-4040.93558).

    Article  CAS  Google Scholar 

  3. Panwar M, Gupta SH. Local drug delivery with tetracycline fiber: an alternative to surgical periodontal therapy. Med J Armed Forces India. 2009;65(3):244–6. https://doi.org/10.1016/S0377-1237(09)80014-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Goodson JM, Haffajee A, Socransky SS. Periodontal therapy by local delivery of tetracycline. J Clin Periodontol. 1979;6(2):83–92. https://doi.org/10.1111/j.1600-051x.1979.tb02186.x.

    Article  CAS  PubMed  Google Scholar 

  5. Okada H, Toguchi H. Biodegradable microspheres in drug delivery. Crit Rev Ther Drug Carrier Syst. 1995;12(1):1–99. https://doi.org/10.1615/critrevtherdrugcarriersyst.v12.i1.10.

    Article  CAS  PubMed  Google Scholar 

  6. Jain N, Jain GK, Javed S, Iqbal Z, Talegaonkar S, Ahmad FJ, Khar RK. Recent approaches for the treatment of periodontitis. Drug Discov Today. 2008;13(21–22):932–43. https://doi.org/10.1016/j.drudis.2008.07.010.

    Article  CAS  PubMed  Google Scholar 

  7. Talmadge JE. The pharmaceutics and delivery of therapeutic polypeptides and proteins. Adv Drug Deliv Rev. 1993;10(2–3):247–99. https://doi.org/10.1016/0169-409X(93)90049-A.

    Article  CAS  Google Scholar 

  8. Park JH, Ye M, Park K. Biodegradable polymers for microencapsulation of drugs. Molecules (Basel, Switzerland). 2005;10(1):146–61. https://doi.org/10.3390/10010146.

    Article  CAS  Google Scholar 

  9. Alvarez AL, Espinar FO, Méndez JB. The application of microencapsulation techniques in the treatment of endodontic and periodontal diseases. Pharmaceutics. 2011;3(3):538–71. https://doi.org/10.3390/pharmaceutics3030538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang YJ, Liu XW, Yang YF, Zhou ZZ. Preparation of tetracycline microparticles based on supercritical fluid technique. Adv Mater Res. 2011;236–238:1707–11. https://doi.org/10.4028/www.scientific.net/amr.236-238.1707.

    Article  Google Scholar 

  11. Govender S, Pillay V, Chetty DJ, Essack SY, Dangor CM, Govender T. Optimisation and characterisation of bioadhesive controlled release tetracycline microspheres. Int J Pharm. 2005;306(1–2):24–40. https://doi.org/10.1016/j.ijpharm.2005.07.026.

    Article  CAS  PubMed  Google Scholar 

  12. Garg T, Singh S, Goyal AK. Stimuli-sensitive hydrogels: an excellent carrier for drug and cell delivery. Crit Rev Ther Drug Carrier Syst. 2013;30:369–409.

    Article  CAS  Google Scholar 

  13. SIDS INITIAL ASSESSMENT PROFILE. UK/ICCA. "SIDS initial assessment profile". OECD existing chemicals database. 2006. SIAM 22: 18–21 April 2006. https://hpvchemicals.oecd.org/UI/handler.axd?id=9802ef92-2c9d-4f21-877e-90b6133efd73. Accessed 23 Apr 2020.

  14. Chambin O, Jannin V. Interest of multifunctional lipid excipients: case of Gelucire® 44/14. Drug Dev Ind Pharm. 2005;31(6):527–34. https://doi.org/10.1080/03639040500215750.

    Article  CAS  PubMed  Google Scholar 

  15. National Center for Biotechnology Information. PubChem compound summary for CID 2682, 1-hexadecanol. Retrieved August 16, 2020. from https://pubchem.ncbi.nlm.nih.gov/compound/1-Hexadecanol.

  16. Kidokoro M, Haramiishi Y, Sagasaki S, Shimizu T, Yamamoto Y. Application of fluidized hot-melt granulation (FHMG) for the preparation of granules for tableting; properties of granules and tablets prepared by FHMG. Drug Dev Ind Pharm. 2002;28(1):67–76. https://doi.org/10.1081/ddc-120001487.

    Article  CAS  PubMed  Google Scholar 

  17. Fiume MM, Bergfeld WF, Belsito DV, et al. Safety assessment of stearyl heptanoate and related stearyl alkanoates as used in cosmetics. Int J Toxicol. 2012;31(5 Suppl):141S-S146. https://doi.org/10.1177/1091581812460408.

    Article  CAS  PubMed  Google Scholar 

  18. National Center for Biotechnology Information. PubChem compound summary for CID 5281, Stearic acid. 2020. Retrieved August 16, 2020 from https://pubchem.ncbi.nlm.nih.gov/compound/Stearic-acid. Accessed 23 Apr 2020.

  19. Wilbur Johnson, Jr., Senior Scientific Analyst and Writer, Cosmetic Ingredient Review, 1101 17th Street, NW, Suite 412, Washington, DC 20036, USA. Final Report on the safety assessment of Ricinus Communis (castor) seed oil, hydrogenated castor oil, glyceryl ricinoleate, glyceryl ricinoleate se, ricinoleic acid, potassium ricinoleate, sodium ricinoleate, zinc ricinoleate, cetyl ricinoleate, ethyl ricinoleate, glycol ricinoleate, isopropyl ricinoleate, methyl ricinoleate, and octyldodecyl ricinoleate1. Int J Toxicol. 2007;26(3_suppl):31–77. https://doi.org/10.1080/10915810701663150.

  20. Witzleb R, Kanikanti VR, Hamann HJ, Kleinebudde P. Solid lipid extrusion with small die diameters–electrostatic charging, taste masking and continuous production. Eur J Pharm Biopharm. 2011;77(1):170–7. https://doi.org/10.1016/j.ejpb.2010.10.002.

    Article  CAS  PubMed  Google Scholar 

  21. Grymonpré W, Verstraete G, Vanhoorne V, Remon JP, De Beer T, Vervaet C. Downstream processing from melt granulation towards tablets: In-depth analysis of a continuous twin-screw melt granulation process using polymeric binders. Eur J Pharm Biopharm. 2018;124:43–54. https://doi.org/10.1016/j.ejpb.2017.12.005.

    Article  CAS  PubMed  Google Scholar 

  22. Weatherley S, Mu B, Thompson MR, Sheskey PJ, O’Donnell KP. Hot-melt granulation in a twin screw extruder: effects of processing on formulations with caffeine and Ibuprofen. J Pharm Sci. 2013;102(12):4330–6. https://doi.org/10.1002/jps.23739.

    Article  CAS  PubMed  Google Scholar 

  23. Rahman Z, Zidan AS, Habib MJ, Khan MA. Understanding the quality of protein loaded PLGA nanoparticles variability by Plackett-Burman design. Int J Pharm. 2010;389(1–2):186–94. https://doi.org/10.1016/j.ijpharm.2009.12.040.

    Article  CAS  PubMed  Google Scholar 

  24. Ceresole R, Han YK, Rosasco MA, Orelli LR, Segall A. Drug-excipient compatibility studies in binary mixtures of avobenzone. J Cosmet Sci. 2013;64(5):317–28.

    CAS  PubMed  Google Scholar 

  25. Obaidat RM, Bader A, Al-Rajab W, Abu Sheikha G, Obaidat AA. Preparation of mucoadhesive oral patches containing tetracycline hydrochloride and carvacrol for treatment of local mouth bacterial infections and candidiasis. Sci Pharm. 2011;79(1):197–212.

    Article  CAS  Google Scholar 

  26. Cequier-Sánchez E, Rodríguez C, Ravelo AG, Zárate R. Dichloromethane as a solvent for lipid extraction and assessment of lipid classes and fatty acids from samples of different natures. J Agric Food Chem. 2008;56(12):4297–303. https://doi.org/10.1021/jf073471e.

    Article  CAS  PubMed  Google Scholar 

  27. Kallakunta VR, Tiwari R, Sarabu S, Bandari S, Repka MA. Effect of formulation and process variables on lipid based sustained release tablets via continuous twin screw granulation: a comparative study. Eur J Pharm Sci. 2018;121:126–38. https://doi.org/10.1016/j.ejps.2018.05.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sarabu S, Bandari S, Kallakunta VR, Tiwari R, Patil H, Repka MA. An update on the contribution of hot-melt extrusion technology to novel drug delivery in the twenty-first century: part II. Expert Opin Drug Deliv. 2019;16(6):567–82. https://doi.org/10.1080/17425247.2019.1614912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Khonsari F, Zakeri-Milani P, Jelvehgari M. Formulation and evaluation of in-vitro characterization of gastic-mucoadhesive microparticles/discs containing metformin hydrochloride. Iran J Pharm Res. 2014;13(1):67–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Gupta A, Peck GE, Miller RW, Morris KR. Nondestructive measurements of the compact strength and the particle-size distribution after milling of roller compacted powders by near-infrared spectroscopy. J Pharm Sci. 2004;93(4):1047–53. https://doi.org/10.1002/jps.20003.

    Article  CAS  PubMed  Google Scholar 

  31. Garala K, Joshi P, Shah M, Ramkishan A, Patel J. Formulation and evaluation of periodontal in situ gel. Int J Pharm Investig. 2013;3(1):29–41. https://doi.org/10.4103/2230-973X.108961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yang Z, Liang X, Jiang X, et al. Development and evaluation of minocycline hydrochloride-loaded in situ cubic liquid crystal for intra-periodontal pocket administration. Molecules. 2018;23(9):2275. Published 2018 Sep 6. https://doi.org/10.3390/molecules23092275.

  33. Villmow T, Kretzschmar B, Pötschke P. Influence of screw configuration, residence time, and specific mechanical energy in twin-screw extrusion of polycaprolactone/multi-walled carbon nanotube composites. Compos Sci Technol. 2010;70(14):2045–55. https://doi.org/10.1016/j.compscitech.2010.07.021.

    Article  CAS  Google Scholar 

  34. Karl W, Perla R, Gérard C, et al. Effect of surfactant on structure thermal behavior of cetyl stearyl alcohols. J Therm Anal Calorim. 2016;123:1411–7. https://doi.org/10.1007/s10973-015-5074-2.

    Article  CAS  Google Scholar 

  35. Pawar J, Tayade A, Gangurde A, Moravkar K, Amin P. Solubility and dissolution enhancement of efavirenz hot melt extruded amorphous solid dispersions using combination of polymeric blends: a QbD approach. Eur J Pharm Sci. 2016;88:37–49. https://doi.org/10.1016/j.ejps.2016.04.001.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We sincerely thank BASF India and DST- FIST for their support in our research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajani B. Athawale.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narkhede, R.G., Athawale, R.B. Screening of Selective C16 to C18 Lipids and Process Optimization Based on Design of Experiments in Formulating Solid Lipid Microparticles by Twin Screw Hot Melt Dispersion Process. J Pharm Innov 17, 940–954 (2022). https://doi.org/10.1007/s12247-021-09575-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-021-09575-0

Keywords

Navigation