Log in

The Science and Policy of the Verified Carbon Standard Methodology for Tidal Wetland and Seagrass Restoration

  • Management Applications
  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

The restoration of tidal wetland and seagrass systems has the potential for significant greenhouse gas benefits, but project-level accounting procedures have not been available at an international scale. In this paper, we describe the Verified Carbon Standard Methodology for Tidal Wetland and Seagrass Restoration, which provides greenhouse gas accounting procedures for marsh, mangrove, tidal forested wetland, and seagrasses systems across a diversity of geomorphic conditions and restoration techniques. We discuss and critique the essential science and policy elements of the methodology and underlying knowledge gaps. We developed a method for estimating mineral-protected (recalcitrant) allochthonous carbon in tidal wetland systems using field-collected soils data and literature-derived default values of the recalcitrant carbon that accompanies mineral deposition. We provided default values for methane emissions from polyhaline soils but did not provide default values for freshwater, oligohaline, and mesohaline soils due to high variability of emissions in these systems. Additional topics covered are soil carbon sequestration default values, soil carbon fate following erosion, avoided losses in organic and mineral soils, nitrous oxide emissions, soil profile sampling methods, sample size, prescribed fire, additionality, and leakage. Knowledge gaps that limit the application of the methodology include the estimation of CH4 emissions from fresh and brackish tidal wetlands, lack of validation of our approach for the estimation of recalcitrant allochthonous carbon, understanding of carbon oxidation rates following drainage of mineral tidal wetland soils, estimation of the effects of prescribed fire on soil carbon stocks, and the analysis of additionality for projects outside of the USA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adams, C.A., J.E. Andrews, and T. Jickells. 2012. Nitrous oxide and methane fluxes vs. carbon, nitrogen and phosphorous burial in new intertidal and saltmarsh sediments. Science of the Total Environment 434: 240–251.

    Article  CAS  Google Scholar 

  • Allen, S.E., H.M. Grimshaw, J.A. Parkinson, and C.L. Quarmby. 1974. Chemical analysis of ecological materials. Malden: Blackwell Scientific.

    Google Scholar 

  • Anisfeld, S.C., M.J. Tobin, and G. Benoit. 1999. Sedimentation rates in flow-restricted and restored salt marshes in Long Island sound. Estuaries 22 (2): 231–244.

    Article  CAS  Google Scholar 

  • Armentano, T.V., and E.S. Menges. 1986. Patterns of change in the carbon balance of organic soil-wetlands of the temperate zone. The Journal of Ecology 74 (3): 755.

    Article  CAS  Google Scholar 

  • Aukland, L., P. Moura Costa, and S. Brown. 2003. A conceptual framework and its application for addressing leakage: the case of avoided deforestation. Climate Policy 3 (2): 123–136.

    Article  Google Scholar 

  • Ballhorn, U., F. Siegert, M. Mason, and S. Limin. 2009. Derivation of burn scar depths and estimation of carbon emissions with LIDAR in Indonesian peatlands. Proceedings of the National Academy of Sciences 106 (50): 21213–21218.

    Article  CAS  Google Scholar 

  • Bickford, W.A., B.A. Needelman, R.R. Weil, and A.H. Baldwin. 2012. Vegetation response to prescribed fire in mid-Atlantic brackish marshes. Estuaries and Coasts 35 (6): 1432–1442.

    Article  Google Scholar 

  • Bickford, W.A., B.A. Needelman, M.W. Miller, and E.G. Hutchins. 2015. Prescribed fire increases soil temperatures through canopy removal in a mid-Atlantic brackish marsh. Journal of Coastal Research 31: 941–945.

    Article  Google Scholar 

  • Blair, N.E., and R.C. Aller. 2012. The fate of terrestrial organic carbon in the marine environment. Annual Review of Marine Science 4 (1): 401–423.

    Article  Google Scholar 

  • Bouillon, S., F. Dahdouh-Guebas, A.V.V.S. Rao, N. Koedam, and F. Dehairs. 2003. Sources of organic carbon in mangrove sediments: variability and possible ecological implications. Hydrobiologia 495 (1/3): 33–39.

    Article  CAS  Google Scholar 

  • Bridgham, S.D., J.P. Megonigal, J.K. Keller, N.B. Bliss, and C. Trettin. 2006. The carbon balance of north American wetlands. Wetlands 26 (4): 889–916.

    Article  Google Scholar 

  • Bridgham, S.D., H. Cadillo-Quiroz, J.K. Keller, and Q. Zhuang. 2013. Methane emissions from wetlands: biogeochemical, microbial, and modeling perspectives from local to global scales. Global Change Biology 19 (5): 1325–1346.

    Article  Google Scholar 

  • Cahoon, D.R., and R.E. Turner. 1989. Accretion and canal impacts in a rapidly subsiding wetland II. Feldspar marker horizon technique. Estuaries 12 (4): 260–268.

    Article  Google Scholar 

  • Cahoon, D.R., J.C. Lynch, P. Hensel, R. Boumans, B.C. Perez, B. Segura, and J.W. Day. 2002. High-precision measurements of wetland sediment elevation: I. Recent improvements to the sedimentation-erosion table. Journal of Sedimentary Research 72 (5): 730–733.

    Article  Google Scholar 

  • Cahoon, D. R., G. Guntenspergen, and S. Baird. 2010. Do annual prescribed fires enhance or slow the loss of coastal marsh habitat at Blackwater National Wildlife Refuge? JFSP research project reports, paper 117.

  • Chmura, G.L., S.C. Anisfeld, D.R. Cahoon, and J.C. Lynch. 2003. Global carbon sequestration in tidal, saline wetland soils. Global Biogeochemical Cycles 17: 1111.

    Article  Google Scholar 

  • Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deepwater habitats of the United States. Washington, D.C.: U.S. Government Printing Office.

    Google Scholar 

  • Craft, C.B., E.D. Seneca, and S.W. Broome. 1991. Loss on ignition and Kjeldahl digestion for estimating organic carbon and total nitrogen in estuarine marsh soils: calibration with dry combustion. Estuaries 14 (2): 175–179.

    Article  CAS  Google Scholar 

  • Dahl, T.E. 2000. Status and trends of wetlands in the conterminous United States 1986 to 1997. Washington, D.C: U.S. Department of the Interior, Fish and Wildlife Service.

    Google Scholar 

  • Dahl, T.E. 2006. Status and trends of wetlands in the conterminous United States 1998 to 2004. Washington, D.C: U.S. Department of the Interior, Fish and Wildlife Service.

    Google Scholar 

  • Dahl, T.E. 2011. Status and trends of wetlands in the conterminous United States 2004 to 2009. Washington, D.C: U.S. Department of the Interior, Fish and Wildlife Service.

    Google Scholar 

  • David, M.B., G.F. McIsaac, R.G. Darmody, and R.A. Omonode. 2009. Long-term changes in mollisol organic carbon and nitrogen. Journal of Environment Quality 38 (1): 200–211.

    Article  CAS  Google Scholar 

  • Davidson, E.A., and I.L. Ackerman. 1993. Changes in soil carbon inventories following cultivation of previously untilled soils. Biogeochemistry 20 (3): 161–193.

    Article  CAS  Google Scholar 

  • Deborde, J., P. Anschutz, F. Guérin, D. Poirier, D. Marty, G. Boucher, G. Thouzeau, M. Canton, and G. Abril. 2010. Methane sources, sinks and fluxes in a temperate tidal lagoon: the Arcachon lagoon (SW France). Estuarine, Coastal and Shelf Science 89 (4): 256–266.

    Article  CAS  Google Scholar 

  • Delaune, R.D., W.H. Patrick, and R.J. Buresh. 1978. Sedimentation rates determined by 137Cs dating in a rapidly accreting salt marsh. Nature 275 (5680): 532–533.

    Article  CAS  Google Scholar 

  • Derenne, S., and C. Largeau. 2001. A review of some important families of refractory macromolecules: composition, origin, and fate in soils and sediments. Soil Science 166 (11): 833–847.

    Article  CAS  Google Scholar 

  • Drexler, J.Z., C.S. de Fontaine, and S.J. Deverel. 2009. The legacy of wetland drainage on the remaining peat in the Sacramento—San Joaquin Delta, California, USA. Wetlands 29 (1): 372–386.

    Article  Google Scholar 

  • Duarte, C.M., H. Kennedy, N. Marbà, and I. Hendricks. 2013. Assessing the capacity of seagrass meadows for carbon burial: current limitations and future strategies. Ocean & Coastal Management 83: 32–38.

    Article  Google Scholar 

  • Emmer, I. M., B. A. Needelman, S. Emmett-Mattox, S. Crooks, J. P. Megonigal, D. Myers, M. P. J. Oreska, K. J. McGlathery, and D. Shoch. 2015a. Methodology for tidal wetland and seagrass restoration. VCS Methodology VM0033, v 1.0. Verified Carbon Standard, Washington, D.C.

  • Emmer, I.M., M. von Unger, B.A. Needelman, S. Crooks, and S. Emmett-Mattox. 2015b. Coastal blue carbon in practice: a manual for using the VCS methodology for tidal wetland and seagrass restoration. Arlington: Restore America’s Estuaries.

    Google Scholar 

  • FEMA. 1991. Projected impact of relative sea level rise on the National Flood Insurance Program. Washington, D.C: Federal Emergency Management Agency, Federal Insurance Administration.

    Google Scholar 

  • Firestone, M.K., and E.A. Davidson. 1989. Microbiological basis of NO and N2O production and consumption in soil. In Exchange of trace gases between terrestrial ecosystems and the atmosphere, ed. M.O. Andreae and D.S. Schimel, 7–21. New York: John Wiley & Sons Ltd.

    Google Scholar 

  • Firestone, M.K., R.B. Firestone, and J.M. Tiedje. 1980. Nitrous oxide from soil denitrification: factors controlling its biological production. Science 208 (4445): 749–751.

    Article  CAS  Google Scholar 

  • Fourqurean, J.W., G.A. Kendrick, L.S. Collins, R.M. Chambers, and M.A. Vanderklift. 2012. Carbon, nitrogen and phosphorus storage in subtropical seagrass meadows: examples from Florida bay and Shark Bay. Marine and Freshwater Research 63 (11): 967–983.

    Article  CAS  Google Scholar 

  • Greiner, J.T., K.J. McGlathery, J. Gunnell, and B.A. McKee. 2013. Seagrass restoration enhances “blue carbon” sequestration in coastal waters. PLoS One 8 (8): e72469.

    Article  CAS  Google Scholar 

  • Haines, E.B. 1976. Stable carbon isotope ratios in the biota, soils and tidal water of a Georgia salt marsh. Estuarine, Coastal and Marine Science 4 (6): 609–616.

    Article  CAS  Google Scholar 

  • Hamrick, K., and A. Goldstein. 2015. Ahead of the curve: state of the voluntary carbon markets 2015. Washington, DC: Forest Trends.

    Google Scholar 

  • Hedges, J.I., and R.G. Keil. 1995. Sedimentary organic matter preservation: an assessment and speculative synthesis. Marine Chemistry 49 (2-3): 81–115.

    Article  CAS  Google Scholar 

  • Howard, J., S. Hoyt, K. Isensee, M. Telszewski, and E. Pidgeon. 2014. Coastal blue carbon: methods for assessing carbon stocks and emissions factors in mangroves, tidal salt marshes, and seagrass meadows. Arlington: Conservation International, Intergovernmental Oceanographic Commission of UNESCO, International Union for Conservation of Nature.

    Google Scholar 

  • IPCC. 2006. 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Prepared by the National Greenhouse Gas Inventories Programme (H.S. Eggleston, L. Buendia, K. Miwa, T. Ngara, and K. Tanabe, editors). IGES, Japan.

  • IPCC. 2014. In 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, ed. T. Hiraishi, T. Krug, K. Tanabe, N. Srivastava, J. Baasansuren, M. Fukuda, and T.G. Troxler. Switzerland: IPCC.

    Google Scholar 

  • Jenny, H. 1941. Factors of soil formation: a system of quantitative pedology. New York: McGraw-Hill.

    Google Scholar 

  • Johannessen, S.C., and R.W. Macdonald. 2016. Geoengineering with seagrasses: is credit due where credit is given? Environmental Research Letters 11 (11): 113001.

    Article  Google Scholar 

  • Kennedy, H., J. Beggins, C.M. Duarte, J.W. Fourqurean, M. Holmer, N. Marbà, and J.J. Middelburg. 2010. Seagrass sediments as a global carbon sink: isotopic constraints. Global Biogeochemical Cycles 24: 1–8.

    Article  Google Scholar 

  • Kristensen, E., S. Bouillon, T. Dittmar, and C. Marchand. 2008. Organic carbon dynamics in mangrove ecosystems: a review. Aquatic Botany 89 (2): 201–219.

    Article  CAS  Google Scholar 

  • Lehmann, J., and M. Kleber. 2015. The contentious nature of soil organic matter. Nature 528 (7580): 60–68.

    Article  CAS  Google Scholar 

  • Mann, L.K. 1986. Changes in soil carbon storage after cultivation. Soil Sciences 142 (5): 279–287.

    Article  CAS  Google Scholar 

  • Mayer, L.M. 1994. Surface area control of organic carbon accumulation in continental shelf sediments. Geochimica et Cosmochimica Acta 58 (4): 1271–1284.

    Article  CAS  Google Scholar 

  • Mayer, L.M. 1999. Extent of coverage of mineral surfaces by organic matter in marine sediments. Geochimica et Cosmochimica Acta 63 (2): 207–215.

    Article  CAS  Google Scholar 

  • Mcleod, E., G.L. Chmura, S. Bouillon, R. Salm, M. Björk, C.M. Duarte, C.E. Lovelock, W.H. Schlesinger, and B.R. Silliman. 2011. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Frontiers in Ecology and the Environment 9 (10): 552–560.

    Article  Google Scholar 

  • Megonigal, J. P. 1996. Methane production and oxidation in a future climate. PhD Dissertation. Duke University, Durham.

  • Megonigal, J.P., and W.H. Schlesinger. 2002. Methane-limited methanotrophy in tidal freshwater swamps. Global Biogeochemical Cycles 16: 1088.

    Article  Google Scholar 

  • Megonigal, J.P., M.E. Hines, and P.T. Visscher. 2004. Anaerobic metabolism: linkages to trace gases and aerobic processes. In Biogeochemistry, ed. W.H. Schlesinger, 317–424. Oxford: Elsevier-Pergamon.

    Google Scholar 

  • Middelburg, J.J., J. Nieuwenhuize, R.K. Lubberts, and O. van de Plassche. 1997. Organic carbon isotope systematics of coastal marshes. Estuarine, Coastal and Shelf Science 45 (5): 681–687.

    Article  CAS  Google Scholar 

  • Myhre, G., D. Shindell, F.-M. Bréon, W. Collins, J. Fuglestvedt, J. Huang, D. Koch, J. Lamarque, D. Lee, B. Mendoza, T. Nakajima, A. Robock, G. Stephens, T. Takemura, and H. Zhang. 2013. Anthropogenic and natural radiative forcing. In Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, ed. T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. **a, V. Bex, and P.M. Midgley. Cambridge: Cambridge University Press.

    Google Scholar 

  • National Oceanic and Atmospheric Administration. 2015. Restoration atlas. v. 1.5. https://restoration.atlas.noaa.gov/src/html/index.html.

  • Needelman, B.A., I.M. Emmer, M.P.J. Oreska, and J.P. Megonigal. 2018. Blue carbon accounting for carbon markets. In A blue carbon primer: the state of coastal wetland carbon science, policy, and practice, ed. L. Windham-Myers, S. Crooks, and T. Troxler. Boca Raton: CRC Press (In Press).

    Google Scholar 

  • Neubauer, S.C., and J.P. Megonigal. 2015. Moving beyond global warming potentials to quantify the climatic role of ecosystems. Ecosystems 18: 1000–1013.

    Article  Google Scholar 

  • Oremland, R.S. 1975. Methane production in shallow-water, tropical marine sediments. Applied and Environmental Microbiology 30: 602–608.

    CAS  Google Scholar 

  • Oreska, M. J. P., K. J. McGlathery, I. M. Emmer, B.A. Needelman, S. Emmett-Mattox, S. Crooks, J. P. Megonigal, D. Myers. 2018. Comment on ‘Geoengineering with seagrasses: is credit due where credit is given?’. Environmental Research Letters. http://iopscience.iop.org/article/10.1088/1748-9326/aaae72/meta. Accessed 6 July 2018.

  • Pendleton, L., D.C. Donato, B.C. Murray, S. Crooks, W.A. Jenkins, S. Sifleet, C. Craft, J.W. Fourqurean, J.B. Kauffman, N. Marbà, P. Megonigal, E. Pidgeon, D. Herr, D. Gordon, and A. Baldera. 2012. Estimating global “blue carbon” emissions from conversion and degradation of vegetated coastal ecosystems. PLoS One 7 (9): e43542.

    Article  CAS  Google Scholar 

  • Perillo, G.M.E., E. Wolanski, D.R. Cahoon, and M.M. Brinson. 2009. Coastal wetlands—an integrated ecosystem approach. 1st ed. Amsterdam: Elsevier.

    Google Scholar 

  • Poffenbarger, H.J., B.A. Needelman, and J.P. Megonigal. 2011. Salinity influence on methane emissions from tidal marshes. Wetlands 31 (5): 831–842.

    Article  Google Scholar 

  • Purvaja, R., and R. Ramesh. 2001. Natural and anthropogenic methane emission from coastal wetlands of South India. Environmental Management 27 (4): 547–557.

    Article  CAS  Google Scholar 

  • Purvaja, R., R. Ramesh, A. Shalini, and T. Rixen. 2008. Biogeochemistry of nitrogen in seagrass and oceanic systems. Memoir Geological Society of India 73: 435–460.

    Google Scholar 

  • Renjith, K.R., M.M. Joseph, P. Ghosh, K.H. Rahman, C.S.R. Kumar, and N. Chandramohanakumar. 2012. Biogeochemical facsimile of the organic matter quality and trophic status of a micro-tidal tropical estuary. Environmental Earth Sciences 70: 729–742.

    Article  Google Scholar 

  • Schmidt, M.W.I., M.S. Torn, S. Abiven, T. Dittmar, G. Guggenberger, I.A. Janssens, M. Kleber, I. Kögel-Knabner, J. Lehmann, D.A.C. Manning, P. Nannipieri, D.P. Rasse, S. Weiner, and S.E. Trumbore. 2011. Persistence of soil organic matter as an ecosystem property. Nature 478 (7367): 49–56.

    Article  CAS  Google Scholar 

  • Smith, C.J., R.D. DeLaune, and W.H. Patrick Jr. 1983. Nitrous oxide emission from Gulf Coast wetlands. Geochimica et Cosmochimica Acta 47 (10): 1805–1814.

    Article  CAS  Google Scholar 

  • Verified Carbon Standard. 2013. Agriculture, forestry, and other land use (AFOLU) requirements. VCS version 3 requirements document. Washington: Verified Carbon Standard.

    Google Scholar 

  • Waycott, M., C.M. Duarte, T.J.B. Carruthers, R.J. Orth, W.C. Dennison, S. Olyarnik, A. Calladine, J.W. Fourqurean, K.L. Heck Jr., A.R. Hughes, G.A. Kendrick, W.J. Kenworthy, F.T. Short, and S.L. Williams. 2009. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proceedings of the National Academy of Sciences 106 (30): 12377–12381.

    Article  CAS  Google Scholar 

  • Welsh, D., M. Bartoli, D. Nizzoli, G. Castaldelli, S.A. Riou, and P. Viaroli. 2000. Denitrification, nitrogen fixation, community primary productivity and inorganic-N and oxygen fluxes in an intertidal Zostera noltii meadow. Marine Ecology Progress Series 208: 65–77.

    Article  Google Scholar 

Download references

Acknowledgements

The development of this methodology was led by Restore America’s Estuaries (RAE) with support from the National Estuarine Research Reserve System Science Collaborative program, the National Oceanic and Atmospheric Administration’s Office of Habitat Conservation, the Ocean Foundation, the Curtis and Edith Munson Foundation, KBR, and the Maryland Department of Natural Resources Power Plant Research Program. We thank Environmental Services, Inc., DNV GL Climate Change Services, and Meagan Gonneea for their valuable criticisms and insights during the methodology validation and review process. As the lead methodology developer, RAE will receive a methodology compensation rebate for each verified carbon unit issued to a project applying VM0033 Tidal Wetland and Seagrass Restoration Methodology. RAE is contracted to return a portion of that rebate to Drs. Crooks and Emmer. VM0033 has been approved by the VCS, and this article may advance its use.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian A. Needelman.

Additional information

Communicated by Charles T. Roman

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Needelman, B.A., Emmer, I.M., Emmett-Mattox, S. et al. The Science and Policy of the Verified Carbon Standard Methodology for Tidal Wetland and Seagrass Restoration. Estuaries and Coasts 41, 2159–2171 (2018). https://doi.org/10.1007/s12237-018-0429-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-018-0429-0

Keywords

Navigation