Log in

Climatic Trends and Temporal Patterns of Phytoplankton Composition, Abundance, and Succession in the Indian River Lagoon, Florida, USA

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

This paper describes the results of 10 years of water quality monitoring in the Indian River Lagoon Florida, with special emphasis on the relationships between trends in climatic conditions and the distribution, composition, and abundance of the phytoplankton community. The Indian River Lagoon, which spans 220 km of Florida’s east coast, is a region of particular concern because of the rapid rate of human development throughout the region and the hydrologically restricted character of the lagoon, which heightens the potential for algal bloom. Water sampling was carried out on a monthly to twice-monthly basis at six sites located in the northern and central lagoon. The 10-year study included both extended periods of below and above average rainfall. A number of ecologically distinct regions exist within the lagoon, which differ considerably in water exchange properties and watershed inputs. The northern lagoon is characterized by longer water residence times, lower phosphorus concentrations, higher nitrogen concentrations, and more stable salinity conditions than the central lagoon. Mean phytoplankton biovolumes were substantially higher at the sites in the northern lagoon than at the sites in the central lagoon, and algal blooms were more common and intense in the former region. Inter-annual patterns of phytoplankton biovolume were also different in the northern and central lagoon. In the northern lagoon, phytoplankton biovolumes were lowest during the drought period, from the autumn of 1998 to the spring of 2001. By contrast, algal bloom events in the central lagoon were not only less frequent but were not tied to periods of high rainfall. The most widespread and common bloom formers were the potentially toxic dinoflagellate Pyrodinium bahamense var. bahamense and two centric diatoms, Dactyliosolen fragilissimus and Cerataulina pelagica. Many of the biovolume peaks observed over the study period were attributable to these three species. The results of time series modeling of phytoplankton dynamics further highlighted the disparities between the two regions of the lagoon in terms of the suite of parameters that best predict the observed trends in the biomass of phytoplankton. Overall, the outcome of this initial modeling effort in the Indian River Lagoon suggests that time series approaches can help define the factors that influence phytoplankton dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adkins, M., M. Mao, M. Taylor, W. Green, C. Basci, M. Bergman, and D. Smith. 2004. Watershed model development for the Indian River Lagoon basin: providing simulated runoff and pollution load to the Indian River Lagoon pollution load reduction model. St. Johns River Water Management District Technical Memorandum 50. Palatka: St. Johns River Water Management District.

    Google Scholar 

  • Akaike, H. 1981. Likelihood of a model and information criteria. Journal of Econometrics 16: 3–14. doi:10.1016/0304-4076(81)90071-3.

    Article  Google Scholar 

  • Anderson, D.M., and K. Rengefors. 2006. Community assembly and seasonal succession of marine dinoflagellates in a temperate estuary: the importance of life cycle events. Limnology and Oceanography 51: 860–873.

    Google Scholar 

  • APHA. 1989. Standard methods for the analysis of water and wastewater, 17th ed. Washington, D.C.: American Public Health Association.

    Google Scholar 

  • Badylak, S., and E.J. Phlips. 2004. Phytoplankton communities of a restricted subtropical lagoon, the Indian River Lagoon, Florida, USA. Journal of Plankton Research 26: 1–22. doi:10.1093/plankt/fbh114.

    Article  Google Scholar 

  • Badylak, S., K. Kelly and E.J. Phlips. 2004. A description of Pyrodinium bahamense from the Indian River Lagoon, Florida, USA. Phycologia 43: 653–657.

    Google Scholar 

  • Badylak, S., and E.J. Phlips. 2008. Spatial and temporal patterns of zooplankton distribution in Tampa Bay, Florida, USA. Journal of Plankton Research 55: 70–81.

    Google Scholar 

  • Badylak, S., E.J. Phlips, P. Baker, J. Fajans, and R. Boler. 2007. Distributions of phytoplankton in Tampa Bay, USA. Bulletin of Marine Science 80: 295–317.

    Google Scholar 

  • Bledsoe, E., E.J. Phlips, C.E. Jett, and K.A. Donnelly. 2004. The relationships among phytoplankton biomass, nutrient loading and hydrodynamics in an inner-shelf estuary, the Suwannee River estuary, Florida, USA. Ophelia 58: 29–47.

    Google Scholar 

  • Brand, L.E. 1984. The salinity tolerance of forty-six marine phytoplankton isolates. Estuarine, Coastal and Shelf Science 18: 543–556. doi:10.1016/0272-7714(84)90089-1.

    Article  CAS  Google Scholar 

  • Burnham, K.P., and D. Anderson. 2003. Model selection and multi-model inference, 2nd ed. New York: Springer.

    Google Scholar 

  • Cloern, J.E. 1996. Phytoplankton bloom dynamics in coastal ecosystems: a review with some general lessons from sustained investigation of San Francisco Bay, California. Reviews of Geophysics 34: 127–168. doi:10.1029/96RG00986.

    Article  CAS  Google Scholar 

  • Cloern, J.E. 2001. Our evolving conceptual model of the coastal eutrophication problem. Marine Ecology Progress Series 210: 223–253. doi:10.3354/meps210223.

    Article  CAS  Google Scholar 

  • Daugbjerg, N., G. Hansen, J. Larsen, and Ø. Moestrup. 2000. Phlylogeny of some of the major genera of dinoflagellates based on ultrastructure and partial LSU r DNA sequence data, including the erection of three new genera of unarmoured dinoflagellates. Phycologia 39: 302–317.

    Article  Google Scholar 

  • Davis, R.A. 1997. Geology of the Florida coast. In The geology of Florida, ed. R.F. Randazzo, and D.S. Jones, 155–168. Gainesville: The University Press of Florida.

    Google Scholar 

  • Dix, N., E.J. Phlips, and R. Gleeson. 2008. Water quality changes in a tidal creek within the Guana Tolomato Matanzas National Estuarine Research Reserve, Florida, associated with the four tropical storms of 2004. Journal of Coastal Research, Special Issue 55: 70–81.

    Google Scholar 

  • Fahnenstiel, G.L., and H.J. Carrick. 1992. Phototrophic picoplankton in Lakes Huron and Michigan: abundance, distribution, composition and contribution to biomass and production. Canadian Journal of Fisheries and Aquatic Sciences 49: 379–388. doi:10.1139/f92-043.

    Article  Google Scholar 

  • Fryxell, G.A., M.C. Villac, and L.P. Shapiro. 1997. The occurrence of the toxic diatom genus Pseudo-nitzschia (Bacillariophyceae) on the west coast of the USA, 1920–1996: a review. Phycologia 36: 419–437.

    Google Scholar 

  • Glibert, P.M., and J.M. Burkholder. 2006. The complex relationships between increases in fertilization of the earth, coastal eutrophication and proliferation of harmful algae blooms. In Ecology of Harmful Algae, ed. E. Granéli, and J.T. Turner, 341–354. Berlin: Springer-Verlag.

    Chapter  Google Scholar 

  • Hallegraeff, G.M. 2003. Harmful algal blooms: a global overview. In Manual on harmful marine microalgae, ed. G.M. Hallegraeff, D.M. Anderson, and A.D. Cembella, 25–49. Paris: UNESCO.

    Google Scholar 

  • Hargraves, P.E. 2002. Diatoms of the Indian River Lagoon, Florida: an annotated account. Florida Scientist 65: 225–244.

    Google Scholar 

  • Hasle, G.R., and E. Syvertsen. 1996. Marine diatoms. In Identifying marine diatoms and dinoflagellates, ed. C.R. Tomas, 5–386. California: Harcourt & Brace.

    Chapter  Google Scholar 

  • Katz, M.E., Z.V. Finkel, D. Grzebyk, A.H. Knoll, and P.G. Falkowski. 2005. Evolutionary trajectories and biogeochemical impacts of marine eukaryotic phytoplankton. Annual Reviews of Ecology and Systematics 35: 523–556.

    Google Scholar 

  • Knoppers, B., B. Kjerfve, and J.P. Carmouze. 1991. Trophic state and water turn-over time in six choked coastal lagoons in Brazil. Biogeochemistry 14: 149–168.

    Article  CAS  Google Scholar 

  • Landsberg, J.H. 2002. The effects of harmful algal blooms on aquatic organisms. Reviews in Fisheries Science 10: 113–390.

    Article  Google Scholar 

  • Landsberg, J.H., S. Hall, J.N. Johannessen, K.D. White, S.M. Conrad, L.J. Flewelling, R.H. Dickey, F.M. Dolah, M.A. Quilliam, T.A. Leighfield, Z. Yinglin, C.G. Baudry, W.R. Richardson, K. Hayes, L. Baird, R.A. Benner, P.L. Rogers, J. Abbot, D. Tremain, D. Heil, R. Hammond, D. Bodager, G. Mcrae, C.M. Stephenson, T. Cody, P.S. Scott, W.S.M. Arnold, H. Schurz-Rogers, A.J. Haywood, and K.A. Steidinger. 2006. Saxitoxin puffer fish poisoning in the United States, with the first report of Pyrodinium bahamense as the putative toxin source. Environmental Health Perspectives 114: 1502–1507.

    Article  CAS  Google Scholar 

  • Margalef, R. 1978. Life-forms of phytoplankton as survival alternatives in an unstable environment. Oceanologica Acta 1: 493–509.

    Google Scholar 

  • Monbet, Y. 1992. Control of phytoplankton biomass in estuaries: a comparative analysis of microtidal and macrotidal estuaries. Estuaries 15: 563–571.

    Article  CAS  Google Scholar 

  • Nixon, S. 1995. Coastal marine eutrophication: a definition, social causes, and future concerns. Ophelia 41: 199–219.

    Google Scholar 

  • Oliviera, A.M., and B. Kjerfve. 1993. Environmental responses of a tropical coastal lagoon system to hydrological variability: Mundau-Manguaba, Brazil. Estuarine, Coastal and Shelf Science 37: 575–591.

    Article  Google Scholar 

  • Paerl, H.W. 1988. Nuisance phytoplankton blooms in coastal, estuarine and inland waters. Limnology and Oceanography 33: 823–847.

    Article  CAS  Google Scholar 

  • Paerl, H.W. 1997. Coastal eutrophication and harmful algae blooms: importance of atmospheric deposition and groundwater as ‘new’ nitrogen and other nutrient sources. Limnology and Oceanography 42: 1154–1165.

    Article  CAS  Google Scholar 

  • Phlips, E.J., S. Badylak, and T.C. Lynch. 1999. Cyanobacterial blooms in Florida Bay. Limnology and Oceanography 44: 1166–1175.

    Article  Google Scholar 

  • Phlips, E.J., S. Badylak, and T. Grosskopf. 2002. Factors affecting the abundance of phytoplankton in a restricted subtropical lagoon, the Indian River Lagoon, Florida, USA. Estuarine, Coastal and Shelf Science 55: 385–402.

    Article  CAS  Google Scholar 

  • Phlips, E.J., S. Badylak, S. Youn, and K. Kelley. 2004a. The occurrence of potentially toxic dinoflagellates and diatoms in a subtropical lagoon, the Indian River Lagoon, Florida, USA. Harmful Algae 3: 39–49.

    Article  Google Scholar 

  • Phlips, E.J., N. Love, S. Badylak, P. Hansen, J. Lockwood, C. John, and R. Gleeson. 2004b. A comparison of water quality and hydrodynamic characteristics of the Guana Tolomato Matanzas National Estuarine Research Reserve and the Indian River Lagoon of Florida. Journal of Coastal Research, Special Issue 45: 93–109.

    Google Scholar 

  • Phlips, E.J., S. Badylak, E.L. Bledsoe, and M. Cichra. 2006. Factors influencing the distribution and abundance of Pyrodinium bahamense in coastal ecosystems of Florida. Marine Ecology Progress Series 322: 99–115.

    Article  CAS  Google Scholar 

  • Phlips, E.J., J. Hendrickson, E.L. Bledsoe, and M. Cichra. 2007. Meteorological influences on algal bloom potential in a nutrient-rich blackwater river. Journal of Freshwater Biology 52: 2141–2155.

    Article  CAS  Google Scholar 

  • Pinckney, J.L., H.W. Paerl, and M.B. Harrington. 1999. Responses of the phytoplankton community growth rate to nutrient pulses in variable estuarine environments. Journal of Phycology 35: 1455–1463.

    Article  CAS  Google Scholar 

  • Qasim, S.Z., P.M. Bhattathiri, and V.P. Devassy. 1972. The influence of salinity on the rate of photosynthesis and abundance of some tropical phytoplankton. Marine Biology 12: 200–206.

    Article  Google Scholar 

  • Reynolds, C.S. 2006. Ecology of phytoplankton. Cambridge: Cambridge University Press.

    Google Scholar 

  • Reynolds, C.S., and T.J. Smayda. 1998. Principles of species selection and community assembly in the phytoplankton: further explorations of the Mandala. In Harmful algae, ed. B. Reguera, J. Blanco, M. Fernández, and T. Wyatt, 8–10. Santiago de Compostela: Xunta de Galicia and Intergovernmental Oceanographic Commission of UNESCO.

    Google Scholar 

  • Ricard, M.I. 1987. Atlas Du Phytoplancton Marin, Diatomophycĕes Volume 2. Anatole, France: Editions Du Centre National De La Recherche Scientifique.

    Google Scholar 

  • Rijstenbil, J.W. 1988. Selection of phytoplankton species in culture by gradual salinity changes. Netherlands Journal of Sea Research 22: 291–300.

    Article  Google Scholar 

  • Sartory, D.P., and J.U. Grobbelaar. 1984. Extraction of chlorophyll a from freshwater phytoplankton for spectrophotometric analysis. Hydrobiologia 114: 177–187.

    CAS  Google Scholar 

  • Seliger, H.H., J.H. Carpenter, M. Loftus, and W.D. McElroy. 1970. Mechanisms for the accumulation of high concentrations of dinoflagellates in a bioluminescent bay. Limnology and Oceanography 15: 234–245.

    Article  Google Scholar 

  • Sheng, Y.P., and J.D. Davis. 2003. Indian River Lagoon pollution load reduction (IRLPLR) model development. Final report to the St. Johns River Water Management District, Volume 1: A 3-D IRL hydrodynamic/salinity model (UF-CH3D). Palatka: St. Johns River Water Management District.

    Google Scholar 

  • Sheng, Y.P., S. Peene, and Y.M. Lui. 1990. Numerical modeling of tidal hydrodynamics and salinity transport in the Indian River Lagoon. Florida Scientist 50: 49–61.

    Google Scholar 

  • Shikata, T., S. Nagasoe, S. Oh, T. Matsubara, Y. Yamasaki, Y. Shimasaki, Y. Oshima, and T. Honjo. 2008. Effects of down- and up-shocks form rapid changes of salinity on survival and growth of estuarine phytoplankters. Journal of the Faculty of Agriculture of Kyushu University 53: 81–87.

    Google Scholar 

  • Smayda, T.J. 1978. From phytoplankton to biomass. In Phytoplankton manual, ed. A. Sournia, 273–279. Paris: United Nations Educational, Scientific and Cultural Organization.

    Google Scholar 

  • Smayda, T.J. 1980. Phytoplankton species succession. In The physiological ecology of phytoplankton, ed. I. Morris, 493–570. Berkeley: University of California Press.

    Google Scholar 

  • Smayda, T.J., and C.S. Reynolds. 2001. Community assembly in marine phytoplankton: application of recent models to harmful dinoflagellate blooms. Journal of Plankton Research 23: 447–461.

    Article  Google Scholar 

  • Smetacek, V., and J. Cloern. 2008. On phytoplankton trends. Science 319: 1346–1348.

    Article  CAS  Google Scholar 

  • Smith, N.P. 1993. Tidal and non-tidal flushing of Florida’s Indian River Lagoon. Estuaries 16: 739–746.

    Article  Google Scholar 

  • Sournia, A. 1986. Atlas Du Phytoplancton Marin. Volume 1. Introduction, Cyanophycees, Dictyochophycees, Dinophycees, et Raphidophycees. Paris: Centre National de la Recherche Scientifique.

    Google Scholar 

  • Steidinger, K.A., and K. Tangen. 1996. Dinoflagellates. In Identifying marine diatoms and dinoflagellates, ed. C.R. Tomas. New York: Academic.

    Google Scholar 

  • Steidinger, K.A., and J. Williams. 1970. Dinoflagellates “Memoirs of the Hourglass Cruises” Vol. 2. St. Petersburg: Florida Department of Natural Resources, Marine Research Laboratory.

    Google Scholar 

  • Steward, J.S., and W.C. Green. 2007. Setting load limits for nutrients and suspended solids based upon seagrass depth-limit targets. Estuaries and Coasts 30: 657–670.

    CAS  Google Scholar 

  • Steward, J.S., R.W. Virnstein, L.J. Morris, and E.F. Lowe. 2005. Setting seagrass depth, coverage, and light targets for the Indian River Lagoon System, Florida. Estuaries 28: 923–935.

    Article  Google Scholar 

  • Steward, J.S., R.W. Virnstein, M.A. Lasi, L.J. Morris, J.D. Miller, L.M. Hall, and W.A. Tweedale. 2006. The impacts of the 2004 hurricanes on hydrology, water quality, and seagrass in the central Indian River Lagoon, Florida. Estuaries and Coasts 29: 954–965.

    Google Scholar 

  • Tester, L.A., and K.A. Steidinger. 1979. Phytoplankton. In Nearshore marine ecology at Hutchinson Island, Florida: 1971–1974. Florida Marine Research Publication 34, ed. L.M. Walker, and K.A. Steidinger, 16–61. St. Petersburg, Florida: Florida Department of Natural Resources.

    Google Scholar 

  • Tozzi, S., O. Schofield, and P. Falkowski. 2004. Historical climate change and ocean turbulence as selective agents for key phytoplankton functional groups. Marine Ecology Progress Series 274: 123–132.

    Article  Google Scholar 

  • Trainer, V.L., B.M. Hickey, and R.A. Horner. 2002. Biological and physical dynamics of domoic acid production off the Washington coast. Limnology and Oceanography 47: 1438–1446.

    Article  CAS  Google Scholar 

  • Turner, J.T. 2006. Harmful algae interactions with marine planktonic grazers. In Ecology of harmful algae, ed. E. Granéli, and J.T. Turner, 341–354. Berlin: Springer-Verlag.

    Google Scholar 

  • Turner, J.T., and E. Granéli. 2006. “Top-down” predation control on marine harmful algae. In Ecology of harmful algae, ed. E. Granéli, and J.T. Turner, 355–366. Berlin: Springer-Verlag.

    Chapter  Google Scholar 

  • Utermöhl, H. 1958. Zur vervollkommnung der quantitativen phytoplankton-methodik. Mitteilingen-Internationale Vereinigung fur Theoretische und Angewandte Limnologie 9: 1–38.

    Google Scholar 

  • Vila, M., and M. Masó. 2005. Phytoplankton functional groups and harmful algae species in anthropogenically impacted waters of the NW Mediterranean Sea. Scientia Marina 69: 31–45.

    Article  Google Scholar 

  • Virnstein, R.W. 1990. The large temporal and spatial variability of the Indian River Lagoon. Florida Scientist 53: 249–256.

    Google Scholar 

  • Watanabe, M., K. Kohata, and T. Kimura. 1991. Diel vertical migration and nocturnal uptake of nutrients by Chattonella antigua under stable stratification. Limnology and Oceanography 36: 593–602.

    Article  Google Scholar 

  • Weise, A.M., M. Levasseur, J. Saucier, S. Senneville, E. Bonneau, S. Roy, G. Sauve, S. Michaud, and J. Fauchot. 2002. The link between precipitation, river runoff, and blooms of the toxic dinoflagellate Alexandrium tamarense in the St. Lawrence. Canadian Journal of Fisheries and Aquatic Sciences 59: 464–473.

    Article  Google Scholar 

  • Yamaguchi, M., S. Itakura, K. Nagasaki, Y. Matsuyama, T. Uchida, and I. Imai. 1997. Effects of temperature and salinity on the growth of the red tide flagellates Heterocapsa circularisquama and Chattonella verruculosa. Journal of Plankton Research 19: 1167–1174.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Joey Chait, Lauren Hall, Phyllis Hansen, Jan Landsberg, Jean Lockwood, Heather Manley, Rich Paperno, Lance Riley, Doug Scheit, and Ariane Staples for their assistance in this study. Special thanks to the Florida Marine Patrol in Titusville for their logistical assistance in this study. The research was funded by grants from the St. Johns River Water Management District and the U.S.E.P.A. National Estuarine Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward J. Phlips.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Phlips, E.J., Badylak, S., Christman, M.C. et al. Climatic Trends and Temporal Patterns of Phytoplankton Composition, Abundance, and Succession in the Indian River Lagoon, Florida, USA. Estuaries and Coasts 33, 498–512 (2010). https://doi.org/10.1007/s12237-009-9166-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-009-9166-8

Keywords

Navigation