Log in

Meltblown nanofiber media for enhanced quality factor

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Nanofibers definitely hold great advantage and promise in filtration as they have very high specific surface area, which ensures greater probability of capturing the particles and hence, the filtration efficiency of the nanofiber filter media is high. Electrospun nanofibers are prohibitively expensive due to extremely low production rate. With recent advances in melt blowing technology, nanofibers could be produced at production rate few orders of magnitude higher than that of conventional single syringe electrospinning and hence, quite cost effective. Influence of air pressure and die to collector distance (DCD) were studied on the number average fiber diameter for the nanofibers as well as the performance properties of the nonwoven webs, each factor at three discrete levels. The nanofibers were as fine as 260 nm. A very encouraging observation of the study is very high values of quality factor observed for nanofiber nonwoven filter media. In order to compare the filtration efficiency of different nanofiber nonwoven media samples with different basis weight, a novel term of specific filtration efficiency is proposed and was found that the specific filtration efficiency with the increase in DCD or air pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Zhang, S. Shim, and J. Kim, Materials and Design, 30, 3659 (2009).

    Article  CAS  Google Scholar 

  2. S. Kaur, R. Gopal, W. J. Ng, S. Ramakrishna, and T. Matsuura, MRS Bulletin, 33, 21 (2008).

    Article  CAS  Google Scholar 

  3. C. Dickenson in “Filters and Filtration Handbook”, Third Edition, Elsevier Advanced Technology, Oxford, UK, 1992.

    Google Scholar 

  4. W. W. F. Leung, C. H. Hung, and P. T. Yuen, Separation and Purification Technology, 71, 30 (2010).

    Article  CAS  Google Scholar 

  5. A. Podgórski, A. Ba azy, and L. Gradón, Chem Eng. Sci., 61, 6804 (2006).

    Article  Google Scholar 

  6. A. Frenot and I. S. Chronakis, Current Opinion in Colloid and Interface Science, 8, 64 (2003).

    Article  CAS  Google Scholar 

  7. T. H. Grafe and K. M. Graham, “Nanofiber Webs from Electrospinning in Nonwovens in Filtration — Fifth International Conference”, Stuttgart, Germany, March, 2003.

    Google Scholar 

  8. K. W. Lee and B. Y. H. Liu, Journal of the Air Pollution Control Association, 30, 377 (1980).

    Article  Google Scholar 

  9. L. Li, M. W. Frey, and T. B. Green, Journal of Engineered Fibers and Fabrics, 1, 1 (2006).

    Google Scholar 

  10. D. H. Reneker, A. L. Yarin, H. Fong, and S. Koombhongse, J. Appl. Phys., 87, 4531 (2000).

    Article  CAS  Google Scholar 

  11. G. T. Kim, Y. C. Ahn, and J. K. Lee, Korean J. Chem. Eng., 25, 368 (2008).

    Article  CAS  Google Scholar 

  12. J. Zimmerman, H. F. Mark, and N. M. Bikales in “Encyclopedia of Polymer Science and Engineering, Wiley”, New York, 1988.

    Google Scholar 

  13. Y. J. Ryu, H. Y. Kim, K. H. Lee, and D. R. Lee, Eur. Polym. J., 39, 1883 (2003).

    Article  CAS  Google Scholar 

  14. A. Greiner and J. H. Wendorff, Angew Chem Int., 46, 5670 (2007).

    Article  CAS  Google Scholar 

  15. G. Ward, Filtration & Separation, 22 (2005).

    Google Scholar 

  16. R. S. Barhate and S. Ramakrishna, J. Membr. Sci., 296, 1 (2007).

    Article  CAS  Google Scholar 

  17. Z. M. Huang, Y. Z. Zhang, M. Kotaki, and S. Ramakrishna, Compos. Sci. Technol., 63, 2223 (2003).

    Article  CAS  Google Scholar 

  18. D. H. Reneker and I. Chun, Nanotechnology, 7, 216 (1996).

    Article  CAS  Google Scholar 

  19. T. Subbiah, G. S. Bhat, R. W. Tock, S. Parameswaran, and S. S. Ramkumar, J. Appl. Polymer Sci., 96, 557 (2005).

    Article  CAS  Google Scholar 

  20. T. Jaroszczyk, Z. G. Liu, S. W. Schwartz, C. E. Holm, K. M. Badeau, and E. Janikowski, “Direct Flow Air Filters—a New Approach to High Performance Engine Filtration in FILTECH 2005 Conference Proceedings”, pp.234–244, Wiesbaden, 11–13 October, 2005.

    Google Scholar 

  21. V. E. Kalayci, P. K. Patra, Y. K. Kim, S. C. Ugbolue, and S. B. Warner, Polymer, 46, 7191 (2005).

    Article  CAS  Google Scholar 

  22. G. S. Bhat and S. R. Malkan, Polymer Laid Nonwovens in “Handbook of Nonwovens” (Steve Russel Ed.), pp.143–200, Woodhead Publishers, 2007.

    Google Scholar 

  23. A. Fabbricante, J. S. Fabbricante, and T. J. Fabbricante, US Patent, 7,857,608 (2010).

  24. J. Wang, S. C. Kim, and D. Y. H. Pui, J. Aerosol Scie., 39, 323 (2008).

    Article  CAS  Google Scholar 

  25. K. M. Yun, C. J. Hogan Jr., Y. Matsubayashi, M. Kawabe, F. Iskandar, and K. Okuyama, Chem. Eng. Sci., 62, 4751 (2007).

    Article  CAS  Google Scholar 

  26. R. Uppal, G. N. Ramaswamy, C. Arnold, R. Goodband, and Y. Wang, J. Biom. Mater. Res. Part B-Appl. Biomat., 97B, 20 (2011).

    Article  CAS  Google Scholar 

  27. TSI Model 8110 Automated Filter Tester Operation and Service Manual, 1989.

  28. R. C. Brown, “Aerosol Filtration, An Integrated Approach to the Theory and Applications of Fibrous Filters”, Pergamon Press, Oxford, 1993.

    Google Scholar 

  29. S. Dhaniyala and B. Y. H. Liu, Aerosol Sci. Technol., 30, 333 (1999).

    Article  CAS  Google Scholar 

  30. R. G. Dorman, Filtration in “Aerosol Science” (C. N. Davies Ed.), pp.195–222, Academic Press, London, 1966.

    Google Scholar 

  31. W. C. Hinds in “Aerosol Technology”, Wiley-Interscience, New York, 1999.

    Google Scholar 

  32. Q. Zhang, J. Welch, H. Park, W. Chang-Yu, W. Sigmund, and J. C. M. Marijnissen, J. Aerosol Sci., 41, 230 (2010).

    Article  Google Scholar 

  33. K. K. Leonas and C. R. Jones, Journal of Textile and Apparel, Technology and Management, 3, 1 (2003).

    Google Scholar 

  34. D. H. Tan, C. Zhou, C. J. Ellison, S. Kumar, C. W. Macosko, and F. S. Bates, J. Non-Newtonian Fluid Mech., 165, 892 (2010).

    Article  CAS  Google Scholar 

  35. A. L. Yarin, S. Sinha-Ray, and B. Pourdeyhimi, Polymer, 52, 2929 (2011).

    Article  CAS  Google Scholar 

  36. Eric M. Moore, Robert L. Shambaugh, and Dimitrios V. Papavassiliou, International Nonwovens Journal, 13, 42 (2004).

    Google Scholar 

  37. Y. Lee and L. C. Wadsworth, Polym. Eng. Sci., 30, 1413 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rohit Uppal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uppal, R., Bhat, G., Eash, C. et al. Meltblown nanofiber media for enhanced quality factor. Fibers Polym 14, 660–668 (2013). https://doi.org/10.1007/s12221-013-0660-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-013-0660-z

Keywords

Navigation