Log in

Surface water quality assessment in the central part of Bangladesh using multivariate analysis

  • Published:
KSCE Journal of Civil Engineering Aims and scope

Abstract

This study deals with the natural and anthropogenic processes that influence the surface water quality in the central Bangladesh using multivariate statistical techniques. The investigation shows that the Total Suspended Solids (TSS), Total Dissolved Solids (TDS), turbidity, Electrical Conductivity (EC), Dissolved Oxygen (DO), Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), NO3 , SO4 2−, Cl, PO4 3− and microbial loads are higher than the Bangladesh standards. R-mode CA groups all 10 sampling sites into 3 statistically significant clusters, reflecting the different physicochemical characteristics and pollution levels of the sites. R-mode CA suggests common sources (industrial, agriculture and urban sewage) for TSS, EC, turbidity, temperature, COD, PO4 3−, SO4 2−, and Fecal Coliform (FC). The PCA/FA identifies 5 dominant factors as responsible for the data structure, explaining 88.3% of the total variance in the dataset. The multiple anthropogenic (i.e., industrial, agricultural, urban sewage) and natural sources (soil erosion, aquatic hyacinths and weeds) of water quality parameters have been identified by PCA. This work is believed to serve as a baseline data for further studies in the Turag River system as well as inform decision-makers on the proper design of sampling and analytical protocols for effective pollution management of the surface water quality in the basin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • APHA (1995). Standard methods for the examination of water and wastewater, 19th Ed., Washington, D.C.: American Public Health Association.

    Google Scholar 

  • Aruga, R., Gastaldi, D., Negro, G., and Ostacoli, G. (1995). “Pollution of a river basin and its evolution with time studied by multivariate statistical analysis.” Anal. Chim. Acta, Vol. 310, No. 1, pp. 15–25.

    Article  Google Scholar 

  • Astel, A., Glosiska, G., Sobczyski, T., Boszke, L., Simeonov, V., Siepak, J. (2006). “Chemometrics in assessment of sustainable development rule implementation.” CEJCh., Vol. 4, No. 3, pp. 543–564.

    Google Scholar 

  • Astel, A., Tsakovski, S., Barbieri, P., and Simeonov, V. (2007). “Comparison of self-organizing maps classification approach with cluster and principal components analysis for large environmental data sets.” Water Res., Vol. 41, No. 19, pp. 4566–4578.

    Article  Google Scholar 

  • Astel, A. Tsakovski, S., Simeonov, V., Reisenhofer, E., Piselli, S., and Barbieri, P. (2008). “Multivariate classification and modeling in surface water pollution estimation.” Anal. Bioanal. Chem., Vol. 390, No. 5, pp. 1283–1292.

    Article  Google Scholar 

  • Baghel, V. S., Gopal, K., Dwivedi, S., and Tripathi, R. D. (2005). “Bacterial indicators of faecal Contamination of the Gangetic river system right at its source.” Ecol. Indicat., Vol. 5, No. 1, pp. 49–56.

    Article  Google Scholar 

  • Bracken, C. L., Hendricks, C. W., and Harding, A. K. (2006). “Apparent bias in river water inoculum following centrifugation.” J. Microbio. Method., Vol. 67, No. 2, pp. 304–309.

    Article  Google Scholar 

  • Clesceri, L. S., Greenberg, A. E., and Eaton, A. D. (1998). Standard methods for the examination of water and wastewater, 20th Ed. American Public Health Association, Washington, D.C.

    Google Scholar 

  • DoE (1997). “Industrial effluents quality standard for Bangladesh.” Bangladesh Gazette Additional.

  • Einax, J. W., Zwanziger, H. W., and Geib, S. (1997). Chemometrics in environmental analysis, Wiley, Weinheim.

    Book  Google Scholar 

  • Elmanama, A. A., Afifi, S., and Bahr, S. (2006). “Seasonal and spatial variation in the monitoring parameters of Gaza Beach during 200–2003.” Environ. Res., Vol. 101, No. 1, pp. 25–33.

    Article  Google Scholar 

  • Fatoki, O. S., Muyima, N. Y. O., and Lujiza, N. (2001). “Situation analysis of water quality in the Umtata River catchment.” Water SA, Vol. 27, No. 4, pp. 467–473.

    Google Scholar 

  • Helena, B., Pardo, R., Vega, M., Barrado, E., Fernández, J. M., Fernández, L. (2000). “Temporal evolution of groundwater composition in an alluvial aquifer (Pisuerga River, Spain) by principal component analysis.” Water Res., Vol. 34, No. 3, pp. 807–816.

    Article  Google Scholar 

  • Howitt, D. and Cramer, D. (2005). Introduction to SPSS in psychology: With supplement for releases 10, 11, 12 and 13, Pearson, Harlow.

    Google Scholar 

  • Jannasch, H. (1968). “Competitive elimination of Enterobacteriaceae from seawater.” Appl. Microbio., Vol. 16, No. 10, pp. 1616–1618.

    Google Scholar 

  • Johnston, M. W. and Williams, J. S. (2006). Field comparison of optical and clark cell dissolved oxygen sensors in the tualatin river, Oregon, 2005, U.S. Geological Survey Open-File Report 2006-1047, p. 11.

  • Kowalkowski, T., Zbytniewski, R., Szpejna, J., and Buszewski, B. (2006). “Application of chemometrics in river water classification.” Water Res., Vol. 40, No. 1, pp. 744–752.

    Article  Google Scholar 

  • Liu, C. W., Lin, K. H., and Kuo, Y. M. (2003). “Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan.” Sci. Tot. Environ., Vol. 313, Nos. 1–3, pp. 77–89.

    Google Scholar 

  • Lu, R. S., and Lo, S. L. (2002). “Diagnosing reservoir water quality using self-organizing maps and fuzzy theory.” Water Res., Vol. 36, No. 9, pp. 2265–2274.

    Article  Google Scholar 

  • Marengo, E., Gennaro, M. C., Giacosa, D., Abrigo, C., Saini, G., and Avignone, M. T. (1995). “How chemometrics can helpfully assist in evaluating environmental data Lagoon water.” Anal. Chim. Acta, Vol. 317, Nos. 1–3, pp. 53–63.

    Article  Google Scholar 

  • Masamba, W. R. L. and Mazvimavi, D. (2008). “Impact on water quality of land uses along Thamalakane-Boteti River: An outlet of the Okavango Delta.” Physic. Chem. Earth, Vol. 33, pp. 687–694.

    Article  Google Scholar 

  • McKenna, J.r., J. E. (2003). “An enhanced cluster analysis program with bootstrap significance testing for ecological community analysis.” Environ. Mode. Softw., Vol. 18, No. 3, pp. 205–220.

    Article  Google Scholar 

  • Mendiguchía, C., Moreno, C., Galindo-Riaòo, D. M., and Garcá-Vargas, M. (2004). “Using chemometric tools to assess anthropogenic effects in river water. A case study: Guadalquivir (Spain).” Anal. Chim. Acta, Vol. 515, No. 1, pp. 143–149.

    Article  Google Scholar 

  • Mvungi, A., Hranova, R. K., and Love, D. (2003). “Impact of home industries on water quality in a tributary of the Marimba River, Harare: implications for urban water management.” Physic. Chem. Earth, Vol. 28, Nos. 20–27, pp. 1131–1137.

    Article  Google Scholar 

  • Nkansah, K., Dawson-Andoh, B., Slahor, J. (2010). “Rapid characterization of biomass using near infrared spectroscopy coupled with multivariate data analysis: Part 1 yellow-poplar (Liriodendron tulipifera L.).” Bioresour. Technol., Vol. 101, No. 2, pp. 4570–4576.

    Article  Google Scholar 

  • Ntengwe, F. W. (2006). “Pollutant loads and water quality in streams of heavily populated and industrialized towns.” Physic. Chem. Earth, Vol. 31, Nos. 15–16, pp. 832–839.

    Article  Google Scholar 

  • Otto, M. (1998). “Multivariate methods.” In: Kellner, R., Mermet, J.M., Otto, M., Widmer, H. M. (Eds.), Analytical Chemistry, WileyeVCH, Weinheim.

    Google Scholar 

  • Ouyang, Y., Nkedi-Kizza, P., Wu, Q. T., Shinde, D., and Huang, C. H. (2006). “Assessment of seasonal variations in surface water quality.” Water Res., Vol. 40, No. 20, pp. 3800–3810.

    Article  Google Scholar 

  • Palamuleni, L. G., Dolozi, M. B., Masamba, W. R. L., and Claudio-Jeke, A. (2004). “Bacteriological contamination of water in urban poor areas: A case study of South Lunzu Township, Blantyre Malawi.” Malawi J. Sci. Techno., Vol. 7, No. 1, pp. 26–33.

    Google Scholar 

  • Qadir, A., Malik, R. N., and Husain, S. Z. (2007). “Spatio-temporal variations in water quality of Nullah Aik-tributary of the river Chenab, Pakistan.” Environ. Monit. Assess., Vol. 140, Nos. 1–3, pp. 43–59.

    Google Scholar 

  • Reghunath, R., Murthy, T. R. S., and Raghavan, B. R. (2002). “The utility of multivariate statistical techniques in hydrogeochemical studies: An example from Karnataka, India.” Water Res., Vol. 36, No. 10, pp. 2437–2442.

    Article  Google Scholar 

  • Rozen, Y. and Belkin, S. (2001). “Survival of enteric bacteria in seawater.” FEMS Microbio. Rev., Vol. 25, No. 5, pp. 513–529.

    Article  Google Scholar 

  • Sarbu, C. and Pop, H. F. (2005). “Principal component analysis versus fuzzy principal component analysis. A case study: The quality of Danube water (1985e 1996).” Talanta, Vol. 65, No. 5, pp. 1215–1220.

    Article  Google Scholar 

  • Shrestha, S. and Kazama, F. (2007). “Assessment of surface water quality using multivariate statistical techniques: A case study of the Fuji river basin, Japan.” Environ. Mode. Softw., Vol. 22, No. 4, pp. 464–475.

    Article  Google Scholar 

  • Simeonov, V., Stefanov, S., and Tsakovski, S. (2000). “Environmetrical treatment of water quality survey data from Yantra River, Bulgaria.” Microch. Acta, Vol. 134, Nos. 1–2, pp. 15–21.

    Article  Google Scholar 

  • Simeonov, V., Stratis, J. A., Samara, C., Zachariadis, G., Voutsa, D., and Anthemidis, A. (2003). “Assessment of the surface water quality in Northern Greece.” Water Res., Vol. 37, No. 17, pp. 4119–4124.

    Article  Google Scholar 

  • Simeonova, P., and Simeonov, V. (2007). “Chemometrics to evaluate the quality of water sources for human consumption.” Microch. Acta, Vol. 156, Nos. 3–4, pp. 315–320.

    Google Scholar 

  • Singh, K. P., Malik, A., Mohan, D., and Sinha, S. (2004). “Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India) — A case study.” Water Res., Vol. 38, No. 18, pp. 3980–3992.

    Article  Google Scholar 

  • Stefanov, S., Simeonov, V., and Tsakovski, S. (1999). “Chemometrical analysis of waste water monitoring data from Yantra river basin, Bulgaria.” Toxicol. Environ. Chem., Vol. 70, pp. 473–482.

    Article  Google Scholar 

  • Tabachnick, B. G. and Fidell, L. S. (2007). Using multivariate statistics, Pearson/Allyn and Bacon, London.

    Google Scholar 

  • USEPA (1985). Test methods for Escherichia coli and enterococci in water by the membrane filter procedure (Method #1103.1), EPA 600/4-85-076, U.S. Environmental Protection Agency, Environmental Monitoring and Support Laboratory, Cincinnati, OH.

    Google Scholar 

  • Vega, M., Pardo, R., Barrado, E., and Deban, L. (1998). “Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis.” Water Res., Vol. 32, No. 12, pp. 3581–3592.

    Article  Google Scholar 

  • WHO (2004). Guidelines for drinking-water quality, Third Ed. WHO, Geneva, Switzerland.

    Google Scholar 

  • Wunderlin, D. A., Diaz, M. P., Ame, M. V., Pesce, S. F., Hued, A. C., and Bistoni, M. A. (2001). “Pattern recognition techniques for the evaluation of spatial and temporal variations in water quality. A case study: Suquia river basin (Cordoba, Argentina).” Water Res., Vol. 35, No. 12, pp. 2881–2894.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad A. H. Bhuiyan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhuiyan, M.A.H., Rakib, M.A., Dampare, S.B. et al. Surface water quality assessment in the central part of Bangladesh using multivariate analysis. KSCE J Civ Eng 15, 995–1003 (2011). https://doi.org/10.1007/s12205-011-1079-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-011-1079-y

Keywords

Navigation