Log in

Poly(Ethylene Glycol) Hydrogel Scaffolds Containing Cell-Adhesive and Protease-Sensitive Peptides Support Microvessel Formation by Endothelial Progenitor Cells

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

The development of stable, functional microvessels remains an important obstacle to overcome for tissue engineered organs and treatment of ischemia. Endothelial progenitor cells (EPCs) are a promising cell source for vascular tissue engineering as they are readily obtainable and carry the potential to differentiate towards all endothelial phenotypes. The aim of this study was to investigate the ability of human umbilical cord blood-derived EPCs to form vessel-like structures within a tissue engineering scaffold material, a cell-adhesive and proteolytically degradable polyethylene glycol hydrogel. EPCs in co-culture with angiogenic mural cells were encapsulated in hydrogel scaffolds by mixing with polymeric precursors and using a mild photocrosslinking process to form hydrogels with homogeneously dispersed cells. EPCs formed 3D microvessels networks that were stable for at least 30 days in culture, without the need for supplemental angiogenic growth factors. These 3D EPC microvessels displayed aspects of physiological microvasculature with lumen formation, expression of endothelial cell proteins (connexin 32, VE-cadherin, eNOS), basement membrane formation with collagen IV and laminin, perivascular investment of PDGFR-β and α-SMA positive cells, and EPC quiescence (<1% proliferating cells) by 2 weeks of co-culture. Our findings demonstrate the development of a novel, reductionist system that is well-defined and reproducible for studying progenitor cell-driven microvessel formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Abdallah, B. M., M. Haack-Sørensen, J. S. Burns, B. Elsnab, F. Jakob, P. Hokland, and M. Kassem. Maintenance of differentiation potential of human bone marrow mesenchymal stem cells immortalized by human telomerase reverse transcriptase gene despite [corrected] extensive proliferation. Biochem. Biophys. Res. Commun. 326:527–538, 2005.

    Article  Google Scholar 

  2. Adams, R. H., and K. Alitalo. Molecular regulation of angiogenesis and lymphangiogenesis. Nat. Rev. Mol. Cell Biol. 8:464–478, 2007.

    Article  Google Scholar 

  3. Anagnostakis, I., A. C. Papassavas, E. Michalopoulos, T. Chatzistamatiou, S. Andriopoulou, A. Tsakris, and C. Stavropoulos-Giokas. Successful short-term cryopreservation of volume-reduced cord blood units in a cryogenic mechanical freezer: effects on cell recovery, viability, and clonogenic potential. Transfusion 54:211–223, 2014.

    Article  Google Scholar 

  4. Armulik, A., G. Genové, and C. Betsholtz. Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev. Cell 21:193–215, 2011.

    Article  Google Scholar 

  5. Bahney, C. S., T. J. Lujan, C. W. Hsu, M. Bottlang, J. L. West, and B. Johnstone. Visible light photoinitiation of mesenchymal stem cell-laden bioresponsibe hydrogels. Eur. Cell Mater. 22:43–55, 2011.

    Google Scholar 

  6. Belvisi, L., T. Riccioni, M. Marcellini, L. Vesci, I. Chiarucci, D. Efrati, D. Potenza, C. Scolastico, L. Manzoni, K. Lombardo, M. A. Stasi, A. Orlandi, A. Ciucci, B. Nico, D. Ribatti, G. Giannini, M. Presta, P. Carminati, and C. Pisano. Biological and molecular properties of a new alpha(v)beta3/alpha(v)beta5 integrin antagonist. Mol. Cancer Ther. 4:1670–1680, 2005.

    Article  Google Scholar 

  7. Bompais, H., J. Chagraoui, X. Canron, M. Crisan, X. H. Liu, A. Anjo, C. Tolla-Le Port, M. Leboeuf, P. Charbord, A. Bikfalvi, and G. Uzan. Human endothelial cells derived from circulating progenitors display specific functional properties compared with mature vessel wall endothelial cells. Blood 103:2577–2584, 2004.

    Article  Google Scholar 

  8. Carmeliet, P. Angiogenesis in life, disease, and medicine. Nature 438:932–936, 2005.

    Article  Google Scholar 

  9. Chen, X., A. S. Aledia, C. M. Ghajar, C. K. Griffith, A. J. Putnam, C. C. Hughes, and S. C. George. Prevascularization of a fibrin-based tissue construct accelerates the formation of functional anastomosis with host vasculature. Tissue Eng. A 15:1363–1371, 2009.

    Article  Google Scholar 

  10. Chwalek, K., M. V. Tsurkan, U. Freudenberg, and C. Werner. Glycosaminoglycan-based hydrogels to modulate heterocellular communication in in vitro angiogenesis models. Sci. Rep. 4:4414, 2014.

    Article  Google Scholar 

  11. Culver, J. C., J. C. Hoffman, R. A. Poché, J. H. Slater, J. L. West, and M. E. Dickinson. Three-dimensional biomimetic patterning in hydrogels to guide cellular organization. Adv. Mater. 24:2344–2348, 2012.

    Article  Google Scholar 

  12. Dejana, E., F. Orsenigo, and M. G. Lampugnani. The role of adherens junctions and VE-cadherin in control of vascular permeability. J. Cell Sci. 121(Pt 13):2115–2122, 2008.

    Article  Google Scholar 

  13. Eapen, M., J. P. Klein, A. Ruggeri, et al. Impact of allele-level HLA matching on outcomes after myeloablative single unit umbilical blood transplantation for hematologic malignancy. Blood 123:133–140, 2014.

    Article  Google Scholar 

  14. Eming, S. A., and J. A. Hubbell. Extracellular matrix in angiogenesis: dynamic structures with translational potential. Exp. Dermatol. 20:605–613, 2011.

    Article  Google Scholar 

  15. Evensen, L., D. R. Micklem, A. Blois, S. V. Berge, N. Aarsaether, A. Littlewood-Evans, J. Wood, and J. B. Lorens. Mural cell associated VEGF is required for organotypic vessel formation. PLoS ONE 4:e5798, 2009.

    Article  Google Scholar 

  16. Fang, J. S., C. Dai, D. T. Kurjiaka, J. M. Burt, and K. K. Hirschi. Connexin45 regulates endothelial-induced mesenchymal cell differentiation toward a mural cell phenotype. Arterioscler. Thromb. Vasc. Biol. 33:362–368, 2013.

    Article  Google Scholar 

  17. Gill, B. J., D. L. Gibbons, L. C. Roudsari, J. E. Saik, Z. H. Rizvi, J. D. Roybal, J. M. Kurie, and J. L. West. A synthetic matrix with independently tunable biochemistry and mechanical properties to study epithelial morphogenesis and EMT in a lung adenocarcinoma model. Cancer Res. 72:6013–6023, 2012.

    Article  Google Scholar 

  18. Hahn, M. S., L. J. Tate, J. J. Moon, M. C. Rowland, K. A. Ruffino, and J. L. West. Photolithographic patterning of polyethylene glycol hydrogels. Biomaterials 27:2519–2524, 2006.

    Article  Google Scholar 

  19. Hanjaya-Putra, D., V. Bose, Y. I. Shen, J. Yee, S. Khetan, K. Fox-Talbot, C. Steenbergen, J. A. Burdick, and S. Gerecht. Controlled activation of morphogenesis to generate a functional human microvasculature in a synthetic matrix. Blood 118:804–815, 2011.

    Article  Google Scholar 

  20. Haug, V., N. Torio-Padron, G. B. Stark, G. Finkenzeller, and S. Strassburg. Comparison between endothelial progenitor cells and human umbilical vein endothelial cells on neovascularization in an adipogenesis mouse model. Microvasc. Res. 97:159–166, 2015.

    Article  Google Scholar 

  21. Herbert, S. P., and D. Y. Stainier. Molecular control of endothelial cell behavior during blood vessel morphogenesis. Nat. Rev. Mol. Cell Biol. 12:551–564, 2011.

    Article  Google Scholar 

  22. Hirschi, K. K., J. M. Burt, K. D. Hirschi, and C. Dai. Gap junction communication mediates transforming growth factor-beta activation and endothelial-induced mural cell differentiation. Circ. Res. 93:429–437, 2003.

    Article  Google Scholar 

  23. Hirschi, K. K., S. A. Rohovsky, L. H. Beck, S. R. Smith, and P. A. D’Amore. Endothelial cells modulate the proliferation of mural cell precursors via platelet-derived growth factor-BB and heterotypic cell contact. Circ. Res. 84:298–305, 1999.

    Article  Google Scholar 

  24. Hotchkiss, K. A., A. W. Ashton, R. Mahmood, R. G. Russell, J. A. Sparano, and E. L. Schwartz. Inhibition of endothelial cell function in vitro and angiogenesis in vivo by docetaxel (Taxotere): association with impaired repositioning of the microtubule organizing center. Mol. Cancer Ther. 1:1191–1200, 2002.

    Google Scholar 

  25. Hynes, R. O. Cell–matrix adhesion in vascular development. J. Thromb. Haemost. 5(Supplement 1):32–40, 2007.

    Article  Google Scholar 

  26. Ingram, D. A., L. E. Mead, H. Tanaka, V. Meade, A. Fenoglio, K. Mortell, K. Pollok, M. J. Ferkowicz, D. Gilley, and M. C. Yoder. Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood 104:2752–2760, 2004.

    Article  Google Scholar 

  27. Jain, R. K. Molecular regulation of vessel maturation. Nat. Med. 9:685–693, 2003.

    Article  Google Scholar 

  28. Kawabe, J., and N. Hasebe. Role of the vasa vasorum and vascular resident stem cells in atherosclerosis. Biomed. Res. Int. 2014. doi:10.1155/2014/701571.

    Google Scholar 

  29. Kirkpatrick, C. J., S. Fuchs, and R. E. Unger. Co-culture systems for vascularization—learning from nature. Adv. Drug Deliv. Rev. 63:291–299, 2011.

    Article  Google Scholar 

  30. Koehler, K. C., D. L. Alge, K. S. Anseth, and C. N. Bowman. A Diels–Alder modulated approach to control and sustain the release of dexamethasone and induce osteogenic differentiation of human mesenchymal stem cells. Biomaterials 34:4150–4158, 2013.

    Article  Google Scholar 

  31. Korff, T., S. Kimmina, G. Martiny-Baron, and H. G. August. Blood vessel maturation in a 3-dimensional spheroidal co-culture model: direct contact with smooth muscle cells regulates endothelial cell quiescence and abrogates VEGF responsiveness. FASEB J 15:447–457, 2001.

    Article  Google Scholar 

  32. Kut, C., F. Mac Gabhann, and A. S. Popel. Where is VEGF in the body? A meta-analysis of VEGF distribution in cancer. Br. J. Cancer 97:978–985, 2007.

    Article  Google Scholar 

  33. Leong, M. F., J. K. Toh, C. Du, K. Narayanan, H. F. Lu, T. C. Lim, A. C. Wan, and J. Y. Ying. Patterned prevascularised tissue constructs by assembly of polyelectrolyte hydrogel fibres. Nat. Commun. 4:2353, 2013.

    Article  Google Scholar 

  34. Lutolf, M. P., J. L. Lauer-Fields, H. G. Schmoekel, A. T. Metters, F. E. Weber, G. B. Fields, and J. A. Hubbell. Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: engineering cell-invasion characteristics. Proc. Natl. Acad. Sci. USA 100:5413–5418, 2003.

    Article  Google Scholar 

  35. Marturano, J. E., J. D. Arena, Z. A. Schiller, I. Georgakoudi, and C. K. Kuo. Characterization of mechanical and biochemical properties of develo** embryonic tendon. Proc. Natl. Acad. Sci. USA 110:6370–6375, 2013.

    Article  Google Scholar 

  36. Melero-Martin, J. M., Z. A. Khan, A. Picard, X. Wu, S. Paruchuri, and J. Bischoff. In vivo vasculogenic potential of human blood-derived endothelial progenitor cells. Blood 109:4761–4768, 2007.

    Article  Google Scholar 

  37. Minuth, W. W., R. Strehl, and K. Schumacher. Tissue Engineering. Essentials for Daily Laboratory Work. Weinheim: Wiley-VCH Verlag, 2005.

    Book  Google Scholar 

  38. Moon, J. J., J. E. Saik, R. A. Poche, J. E. Leslie-Barbick, S. Lee, A. A. Smith, M. E. Dickinson, and J. L. West. Biomimetic hydrogels with pro-angiogenic properties. Biomaterials 31:3840–3847, 2010.

    Article  Google Scholar 

  39. Morais, J. M., F. Papadimitrakopoulos, and D. J. Burgess. Biomaterials/tissue interactions: possible solutions to overcome foreign body response. AAPS J. 12:188–196, 2010.

    Article  Google Scholar 

  40. Nagase, H., and G. B. Fields. Human matrix metalloproteinase specificity studies using collagen sequence-based synthetic peptides. Biopolymers 40:399–416, 1996.

    Article  Google Scholar 

  41. Novosel, E. C., C. Kleinhans, and P. J. Kluger. Vascularization is the key challenge in tissue engineering. Adv. Drug Deliv. Rev. 63:300–311, 2011.

    Article  Google Scholar 

  42. Okamoto, T., N. Akita, E. Kawamoto, T. Hayashi, K. Suzuki, and M. Shimaoka. Endothelial connexin32 enhances angiogenesis by positively regulating tube formation and cell migration. Exp. Cell Res. 321:133–141, 2014.

    Article  Google Scholar 

  43. Okamoto, T., M. Akiyama, M. Takeda, E. C. Gabazza, T. Hayashi, and K. Suzuki. Connexin32 is expressed in vascular endothelial cells and participates in gap-junction intercellular communication. Biochem. Biophys. Res. Commun. 382:264–268, 2009.

    Article  Google Scholar 

  44. Peters, E. B., N. Christoforou, K. W. Leong, and G. A. Truskey. Comparison of mixed and lamellar co-culture spatial arrangements for tissue engineering capillary networks in vitro. Tissue Eng. A 19:697–706, 2013.

    Article  Google Scholar 

  45. Peters, E. B., N. Christoforou, E. Moore, J. L. West, and G. A. Truskey. CD45+ cells present within mesenchymal stem cell populations affect network formation of blood-derived endothelial outgrowth cells. Biores. Open Access 4(1):75–88, 2015. doi:10.1089/biores.2014.0029.

    Article  Google Scholar 

  46. Peters, E. B., B. Liu, N. Christoforou, J. L. West, and G. A. Truskey. Umbilical cord blood-derived mononuclear cells exhibit pericyte-like phenotype and support network formation of endothelial progenitor cells in vitro. Ann. Biomed. Eng. 2015. doi:10.1007/s10439-015-1301-z.

    Google Scholar 

  47. Phelps, E. A., N. Landázuri, P. M. Thulé, W. R. Taylor, and A. J. García. Bioartificial matrices for therapeutic vascularization. Proc. Natl. Acad. Sci. USA 107:3323–3328, 2010.

    Article  Google Scholar 

  48. Potente, M., H. Gerhardt, and P. Carmeliet. Basic and therapeutic aspects of angiogenesis. Cell 146:873–887, 2011.

    Article  Google Scholar 

  49. Rao, R. R., A. W. Peterson, J. Ceccarelli, A. J. Putnam, and J. P. Stegemann. Matrix composition regulates three-dimensional network formation by endothelial cells and mesenchymal stem cells in collagen/fibrin materials. Angiogenesis 15:253–264, 2012.

    Article  Google Scholar 

  50. Rouwkema, J., N. C. Rivron, and C. A. van Blitterswijk. Vascularization in tissue engineering. Trends Biotechnol. 26:434–441, 2008.

    Article  Google Scholar 

  51. Saik, J. E., D. J. Gould, A. H. Keswani, M. E. Dickinson, and J. L. West. Biomimetic hydrogels with immobilized ephrinA1 for therapeutic angiogenesis. Biomacromolecules 12:2715–2722, 2011.

    Article  Google Scholar 

  52. Seeto, W. J., Y. Tian, and E. A. Lipke. Peptide-grafted poly(ethylene glycol) hydrogels support dynamic adhesion of endothelial progenitor cells. Acta Biomater. 9:8279–8289, 2013.

    Article  Google Scholar 

  53. Sekine, H., T. Shimizu, K. Hobo, S. Sekiya, J. Yang, M. Yamato, H. Kurosawa, E. Kobayashi, and T. Okano. Endothelial cell co-culture within tissue-engineered cardiomyocyte sheets enhances neovascularization and improves cardiac function of ischemic hearts. Circulation 118:S145–S152, 2008.

    Article  Google Scholar 

  54. Senger, D. R. Molecular framework for angiogenesis: a complex web of interactions between extravasated plasma proteins and endothelial cell proteins induced by angiogenic cytokines. Am. J. Pathol. 149:1–7, 1996.

    Google Scholar 

  55. Senger, D. R., and G. E. Davis. Angiogenesis. Cold Spring Harb. Perspect. Biol. 3:a005090, 2011.

    Article  Google Scholar 

  56. Stupack, D. G., and D. A. Cheresh. Integrins and angiogenesis. Curr. Top. Dev. Biol. 64:207–238, 2004.

    Article  Google Scholar 

  57. Tremblay, P. L., V. Hudon, F. Berthod, L. Germain, and F. A. Auger. Inosculation of tissue-engineered capillaries with the host’s vasculature in a reconstructed skin transplanted on mice. Am. J. Transplant. 5:1002–1010, 2005.

    Article  Google Scholar 

  58. Turturro, M. V., M. C. Christenson, J. C. Larson, D. A. Young, E. M. Brey, and G. Papavasiliou. MMP-sensitive PEG diacrylate hydrogels with spatial variations in matrix properties stimulate directional vascular sprout formation. PLoS 8:e58897, 2013.

    Article  Google Scholar 

  59. Tziros, C., and J. E. Freedman. The many antithrombotic actions of nitric oxide. Curr. Drug Targets 7:1243–1251, 2006.

    Article  Google Scholar 

  60. Unger, R. E., S. Ghanaati, C. Orth, A. Sartoris, M. Barbeck, S. Halstenberg, A. Motta, C. Migliaresi, and C. J. Kirkpatrick. The rapid anastomosis between prevascularized networks on silk fibroin scaffolds generated in vitro with co-cultures of human microvascular endothelial and osteoblast cells and the host vasculature. Biomaterials 31:6959–6967, 2010.

    Article  Google Scholar 

  61. Vigen, M., J. Ceccareli, and A. J. Putnam. Protease-sensitive PEG hydrogels regulate vascularization in vitro and in vivo. Macromol. Biosci. 14:1368–1379, 2014.

    Article  Google Scholar 

  62. Welti, J., S. Loges, S. Dimmeler, and P. Carmeliet. Recent molecular discoveries in angiogenesis and antiangiognic therapies in cancer. J. Clin. Invest. 123:3190–3200, 2013.

    Article  Google Scholar 

  63. Wu, X., E. Rabkin-Aikawa, K. J. Guleserian, T. E. Perry, Y. Masuda, F. W. Sutherland, F. J. Schoen, J. E. Mayer, Jr, and J. Bischoff. Tissue-engineered microvessels on three-dimensional biodegradable scaffolds using human endothelial progenitor cells. Am. J. Physiol. Heart Circ. Physiol. 287:H480–H487, 2004.

    Article  Google Scholar 

  64. Yang, J., U. Nagavarapu, K. Relloma, M. D. Sjaastad, W. C. Moss, A. Passaniti, and G. S. Herron. Telomerized human microvasculature is functional in vivo. Nat. Biotechnol. 19:219–224, 2001.

    Article  Google Scholar 

  65. Yoder, M. C. Human endothelial progenitor cells. Cold Spring Harb Perspect Med. 2:a006692, 2012.

    Article  Google Scholar 

  66. Yoder, M. C. Endothelial progenitor cell: a blood cell by many other names may serve similar functions. J. Mol. Med. (Berl). 91:285–295, 2013.

    Article  Google Scholar 

  67. Yoder, M. C., L. E. Mead, D. Prater, T. R. Krier, K. N. Mroueh, F. Li, R. Krasich, C. J. Temm, J. T. Prchal, and D. A. Ingram. Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood 109:1801–1809, 2007.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by NIH Grant 5R01HL097520 and NSF Graduate Research Fellowship 1106401 to E.B.P. The authors would like to acknowledge Ms. Yan Wu for her assistance in mechanical testing.

Conflicts of interest

Erica B. Peters, Nicolas Christoforou, Kam W. Leong, George A. Truskey, and Jennifer L. West declare that they have no conflicts of interest.

Ethical Standards

No human or animal studies were carried out by the authors of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erica B. Peters.

Additional information

Associate Editor Michael R. King oversaw the review of this article.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplemental Fig. 1

Representative histograms from flow cytometry characterization of EPCs at passage 3 showing expression for EC-associated marker expression for CD31, CD105, CD309/VEGFR2, CD146, and CD34 (A) and lack of expression for leukocyte-associated markers CD115 and CD45 and mesenchymal stem cell/fibroblast-associated marker CD90 (B). The y-axis is the percentage of the maximum number of events within the FITC or PE channel, the x-axis indicates the relative fluorescence intensity of PE or FITC expression, calculated by integration of fluorescence over the cell area. The percentage of positive cells for each condition is in reference to the negative control, which consisted of mouse IgG1 isotype, indicated by a red outline. A minimum of 9000 events were analyzed per condition (TIFF 3249 kb)

Supplemental Fig. 2

Characterization of SMCs for mural cell-associated protein markers α-SMA, calponin, PDGFR-β, and Ephrin-B2. Scale bar equals 100 µm (TIFF 10067 kb)

Supplemental Fig. 3

(A) Representative images of microvessel formation throughout the hydrogel by GFP-transduced HUVECs and hCB-EPCs (EPCs) in 1:1 co-culture with SMCs (not visible) after 14 days of culture. Scale bar equals 50 µm. (B) Representative images of hCB-EPC (EPC) monoculture controls at days 7 and 14 after encapsulation. Images were taken within a 50-µm depth from the gel surface. Scale bar equals 250 µm. (C) Representative images depicting the localization of SMCs, transduced with GFP, near microvessels formed by hCB-EPCs (EPCs) or HUVECs, transduced with tomato-fluorescent protein, after 14 days of culture. Images were taken within a 50-µm depth from the gel surface. Scale bar equals 250 µm. (D) Representative image of EPC microvessels, transduced with GFP, after 30 days of in vitro co-culture with SMCs (not visible) at a 1:1 ratio. Images were taken within a 50-µm depth from the gel surface. Scale bar equals 250 µm (TIFF 16793 kb)

Supplementary material 4 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peters, E.B., Christoforou, N., Leong, K.W. et al. Poly(Ethylene Glycol) Hydrogel Scaffolds Containing Cell-Adhesive and Protease-Sensitive Peptides Support Microvessel Formation by Endothelial Progenitor Cells. Cel. Mol. Bioeng. 9, 38–54 (2016). https://doi.org/10.1007/s12195-015-0423-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-015-0423-6

Keywords

Navigation