Log in

Menatetrenone facilitates hematopoietic cell generation in a manner that is dependent on human bone marrow mesenchymal stromal/stem cells

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

A Correction to this article was published on 15 September 2020

This article has been updated

Abstract

Vitamin K2 in the form of menatetrenone has clinical benefits for osteoporosis and cytopenia. Given the dominant role of mesenchymal-osteolineage cells in the regulation of hematopoiesis, we investigated whether menatetrenone alters the hematopoiesis-supportive capability of human bone marrow mesenchymal stromal/stem cells (BM-MSCs). Menatetrenone up-regulated fibronectin protein expression in BM-MSCs without affecting their proliferation and differentiation capabilities. In addition, menatetrenone treatment of BM-MSCs enhanced generation of the CD34+ cell population in co-cultures through acceleration of the cell cycle. This effect was associated with cell–cell interactions mediated by VLA-4 and fibronectin. This proposal was supported by cytokine array and quantitative real-time PCR analyses, in which there were no significant differences between the expression levels of hematopoiesis-associated soluble factors in naïve and menatetrenone-treated BM-MSCs. Profiling of hematopoietic cells in co-cultures with menatetrenone-treated BM-MSCs demonstrated that they included significantly more CD34+CD38+ hematopoietic progenitor cells and cells skewed toward myeloid and megakaryocytic lineages than those in co-cultures with untreated BM-MSCs. Notably, myelodysplastic syndrome-derived cells were induced to undergo apoptosis when co-cultured with BM-MSCs, and this effect was enhanced by menatetrenone. Overall, our findings indicate that pharmacological treatment with menatetrenone bestows a unique hematopoiesis-supportive capability on BM-MSCs, which may contribute to the clinical improvement of cytopenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Change history

  • 15 September 2020

    In the original publication of the article, the Figs.��4 C, F and 5 B, C were published with unexpected appearance of dots.

References

  1. Suttie JW. Vitamin K-dependent carboxylase. Annu Rev Biochem. 1985;54:459–77. https://doi.org/10.1146/annurev.bi.54.070185.002331.

    Article  CAS  PubMed  Google Scholar 

  2. Shitaki S, Tsugawa N, Okano T. Recent advances in vitamin K-dependent Gla-containing proteins and vitamin K nutrition. Osteoporos Sarcopenia. 2015;1:22–38. https://doi.org/10.1016/j.afos.2015.07.009.

    Article  Google Scholar 

  3. Su S, He N, Men P, Song C, Zhai S. The efficacy and safety of menatetrenone in the management of osteoporosis: a systematic review and meta-analysis of randomized controlled trials. Osteoporos Int. 2019;30:1175–86. https://doi.org/10.1007/s00198-019-04853-7.

    Article  CAS  PubMed  Google Scholar 

  4. Takami A, Nakao S, Ontachi Y, Yamauchi H, Matsuda T. Successful therapy of myelodysplastic syndrome with menatetrenone, a vitamin K2 analog. Int J Hematol. 1999;69:24–6.

    CAS  PubMed  Google Scholar 

  5. Miyazawa K, Nishimaki J, Ohyashiki K, Enomoto S, Kuriya S, Fukuda R, et al. Vitamin K2 therapy for myelodysplastic syndromes (MDS) and post-MDS acute myeloid leukemia: information through a questionnaire survey of multi-center pilot studies in Japan. Leukemia. 2000;14:1156–7. https://doi.org/10.1038/sj.leu.2401790.

    Article  CAS  PubMed  Google Scholar 

  6. Takami A, Asakura H, Nakao S. Menatetrenone, a vitamin K2 analog, ameliorates cytopenia in patients with refractory anemia of myelodysplastic syndrome. Ann Hematol. 2002;81:16–9. https://doi.org/10.1007/s00277-001-0391-x.

    Article  CAS  PubMed  Google Scholar 

  7. Akiyama N, Miyazawa K, Kanda Y, Tohyama K, Omine M, Mitani K, et al. Multicenter phase II trial of vitamin K(2) monotherapy and vitamin K(2) plus 1alpha-hydroxyvitamin D(3) combination therapy for low-risk myelodysplastic syndromes. Leuk Res. 2010;34:1151–7. https://doi.org/10.1016/j.leukres.2010.04.006.

    Article  CAS  PubMed  Google Scholar 

  8. Yaguchi M, Miyazawa K, Katagiri T, Nishimaki J, Kizaki M, Tohyama K, et al. Vitamin K2 and its derivatives induce apoptosis in leukemia cells and enhance the effect of all-trans retinoic acid. Leukemia. 1997;11:779–87. https://doi.org/10.1038/sj.leu.2400667.

    Article  CAS  PubMed  Google Scholar 

  9. Nishimaki J, Miyazawa K, Yaguchi M, Katagiri T, Kawanishi Y, Toyama K, et al. Vitamin K2 induces apoptosis of a novel cell lines established from a patient with myelodysplastic syndrome in blastic transformation. Leukemia. 1999;13:1399–405.

    Article  CAS  Google Scholar 

  10. Morrison SJ, Scadden DT. The bone marrow niche for haematopoietic stem cells. Nature. 2014;505:327–34. https://doi.org/10.1038/nature12984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wei Q, Frenette PS. Niches for hematopoietic stem cells and their progeny. Immunity. 2018;48:632–48. https://doi.org/10.1016/j.immuni.2018.03.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Arai F, Hirao A, Ohmura M, Sato H, Matsuoka S, Takubo K, et al. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell. 2004;118:149–61. https://doi.org/10.1016/j.cell.2004.07.004.

    Article  CAS  PubMed  Google Scholar 

  13. Sato M, Asada N, Kawano Y, Wakahashi K, Minagawa K, Kawano H, et al. Osteocytes regulate primary lymphoid organs and fat metabolism. Cell Metab. 2013;18:749–58. https://doi.org/10.1016/j.cmet.2013.09.014.

    Article  CAS  PubMed  Google Scholar 

  14. Fulzele K, Krause DS, Panaroni C, Saini V, Barry KJ, Liu X, et al. Myelopoiesis is regulated by osteocytes through Gsalpha-dependent signaling. Blood. 2013;121:930–9. https://doi.org/10.1182/blood-2012-06-437160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC, et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature. 2003;425:841–6. https://doi.org/10.1038/nature02040.

    Article  CAS  PubMed  Google Scholar 

  16. Paredes-Gamero EJ, Barbosa CM, Ferreira AT. Calcium signaling as a regulator of hematopoiesis. Front Biosci (Elite Ed). 2012;4:1375–84.

    Article  Google Scholar 

  17. Yao H, Miura Y, Yoshioka S, Miura M, Hayashi Y, Tamura A, et al. Parathyroid hormone enhances hematopoietic expansion via upregulation of cadherin-11 in bone marrow mesenchymal stromal cells. Stem Cells. 2014;32:2245–55. https://doi.org/10.1002/stem.1701.

    Article  CAS  PubMed  Google Scholar 

  18. Sugino N, Miura Y, Yao H, Iwasa M, Fujishiro A, Fujii S, et al. Early osteoinductive human bone marrow mesenchymal stromal/stem cells support an enhanced hematopoietic cell expansion with altered chemotaxis- and adhesion-related gene expression profiles. Biochem Biophys Res Commun. 2016;469:823–9. https://doi.org/10.1016/j.bbrc.2015.12.061.

    Article  CAS  PubMed  Google Scholar 

  19. Fujishiro A, Miura Y, Iwasa M, Fujii S, Sugino N, Andoh A, et al. Effects of acute exposure to low-dose radiation on the characteristics of human bone marrow mesenchymal stromal/stem cells. Inflamm Regen. 2017;37:19. https://doi.org/10.1186/s41232-017-0049-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini FC, Krause DS, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–7. https://doi.org/10.1080/14653240600855905.

    Article  CAS  PubMed  Google Scholar 

  21. Miura Y. Human bone marrow mesenchymal stromal/stem cells: current clinical applications and potential for hematology. Int J Hematol. 2016;103:122–8. https://doi.org/10.1007/s12185-015-1920-z.

    Article  CAS  PubMed  Google Scholar 

  22. Giarratana MC, Kobari L, Lapillonne H, Chalmers D, Kiger L, Cynober T, et al. Ex vivo generation of fully mature human red blood cells from hematopoietic stem cells. Nat Biotechnol. 2005;23:69–74. https://doi.org/10.1038/nbt1047.

    Article  CAS  PubMed  Google Scholar 

  23. Boehm D, Murphy WG, Al-Rubeai M. The potential of human peripheral blood derived CD34 + cells for ex vivo red blood cell production. J Biotechnol. 2009;144:127–34. https://doi.org/10.1016/j.jbiotec.2009.08.017.

    Article  CAS  PubMed  Google Scholar 

  24. Li B, Ding L, Yang C, Kang B, Liu L, Story MD, et al. Characterization of transcription factor networks involved in umbilical cord blood CD34 + stem cells-derived erythropoiesis. PLoS One. 2014;9:e107133. https://doi.org/10.1371/journal.pone.0107133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Matsuoka A, Tochigi A, Kishimoto M, Nakahara T, Kondo T, Tsujioka T, et al. Lenalidomide induces cell death in an MDS-derived cell line with deletion of chromosome 5q by inhibition of cytokinesis. Leukemia. 2010;24:748–55. https://doi.org/10.1038/leu.2009.296.

    Article  CAS  PubMed  Google Scholar 

  26. Drexler HG, Dirks WG, Macleod RA. Many are called MDS cell lines: one is chosen. Leuk Res. 2009;33:1011–6. https://doi.org/10.1016/j.leukres.2009.03.005.

    Article  CAS  PubMed  Google Scholar 

  27. Klamer S, Voermans C. The role of novel and known extracellular matrix and adhesion molecules in the homeostatic and regenerative bone marrow microenvironment. Cell Adhes Migr. 2014;8:563–77. https://doi.org/10.4161/19336918.2014.968501.

    Article  Google Scholar 

  28. Williams DA, Rios M, Stephens C, Patel VP. Fibronectin and VLA-4 in haematopoietic stem cell-microenvironment interactions. Nature. 1991;352:438–41.

    Article  CAS  Google Scholar 

  29. Okamoto T, Okada M, Yamada S, Takatsuka H, Wada H, Tamura A, et al. Good response to cyclosporine therapy in patients with myelodysplastic syndromes having the HLA-DRB1*1501 allele. Leukemia. 2000;14:344–6. https://doi.org/10.1038/sj.leu.2401665.

    Article  CAS  PubMed  Google Scholar 

  30. Hellstrom-Lindberg E, Ahlgren T, Beguin Y, Carlsson M, Carneskog J, Dahl IM, et al. Treatment of anemia in myelodysplastic syndromes with granulocyte colony-stimulating factor plus erythropoietin: results from a randomized phase II study and long-term follow-up of 71 patients. Blood. 1998;92:68–75.

    Article  CAS  Google Scholar 

  31. Raza A, Reeves JA, Feldman EJ, Dewald GW, Bennett JM, Deeg HJ, et al. Phase 2 study of lenalidomide in transfusion-dependent, low-risk, and intermediate-1 risk myelodysplastic syndromes with karyotypes other than deletion 5q. Blood. 2008;111:86–93. https://doi.org/10.1182/blood-2007-01-068833.

    Article  CAS  PubMed  Google Scholar 

  32. Nilsson-Ehle H, Birgegard G, Samuelsson J, Antunovic P, Astermark J, Garelius H, et al. Quality of life, physical function and MRI T2* in elderly low-risk MDS patients treated to a haemoglobin level of ≥ 120 g/L with darbepoetin alfa ± filgrastim or erythrocyte transfusions. Eur J Haematol. 2011;87:244–52. https://doi.org/10.1111/j.1600-0609.2011.01654.x.

    Article  CAS  PubMed  Google Scholar 

  33. Tefferi A, Vardiman JM. Myelodysplastic syndromes. N Engl J Med. 2009;361:1872–85. https://doi.org/10.1056/NEJMra0902908.

    Article  CAS  PubMed  Google Scholar 

  34. Tefferi A. Myelodysplastic syndromes–many new drugs, little therapeutic progress. Mayo Clin Proc. 2010;85:1042–5.

    Article  Google Scholar 

  35. Interview form of Glakay®. (https://medical.eisai.jp/content/000000488.pdf). Accessed 5 May 2020.

  36. Klopp AH, Gupta A, Spaeth E, Andreeff M, Marini F 3rd. Concise review: dissecting a discrepancy in the literature: do mesenchymal stem cells support or suppress tumor growth? Stem Cells. 2011;29:11–9. https://doi.org/10.1002/stem.559.

    Article  CAS  PubMed  Google Scholar 

  37. Qiao L, Xu ZL, Zhao TJ, Ye LH, Zhang XD. Dkk-1 secreted by mesenchymal stem cells inhibits growth of breast cancer cells via depression of Wnt signalling. Cancer Lett. 2008;269:67–77. https://doi.org/10.1016/j.canlet.2008.04.032.

    Article  CAS  PubMed  Google Scholar 

  38. Li L, Tian H, Yue W, Zhu F, Li S, Li W. Human mesenchymal stem cells play a dual role on tumor cell growth in vitro and in vivo. J Cell Physiol. 2011;226:1860–7. https://doi.org/10.1002/jcp.22511.

    Article  CAS  PubMed  Google Scholar 

  39. Kidd S, Caldwell L, Dietrich M, Samudio I, Spaeth EL, Watson K, et al. Mesenchymal stromal cells alone or expressing interferon-β suppress pancreatic tumors in vivo, an effect countered by anti-inflammatory treatment. Cytotherapy. 2010;12:615–25. https://doi.org/10.3109/14653241003631815.

    Article  CAS  PubMed  Google Scholar 

  40. Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW, et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature. 2007;449:557–63. https://doi.org/10.1038/nature06188.

    Article  CAS  PubMed  Google Scholar 

  41. Yu JM, Jun ES, Bae YC, Jung JS. Mesenchymal stem cells derived from human adipose tissues favor tumor cell growth in vivo. Stem Cells Dev. 2008;17:463–73. https://doi.org/10.1089/scd.2007.0181.

    Article  CAS  PubMed  Google Scholar 

  42. Lin G, Yang R, Banie L, Wang G, Ning H, Li L, et al. Effects of transplantation of adipose tissue-derived stem cells on prostate tumor. Prostate. 2010;70:1066–73. https://doi.org/10.1002/pros.21140.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Yulyana Y, Ho IA, Sia KC, Newman JP, Toh XY, Endaya BB, et al. Paracrine factors of human fetal MSCs inhibit liver cancer growth through reduced activation of IGF-1R/PI3K/Akt signaling. Mol Ther. 2015;23:746–56. https://doi.org/10.1038/mt.2015.13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wu YL, Li HY, Zhao XP, Jiao JY, Tang DX, Yan LJ, et al. Mesenchymal stem cell-derived CCN2 promotes the proliferation, migration and invasion of human tongue squamous cell carcinoma cells. Cancer Sci. 2017;108:897–909. https://doi.org/10.1111/cas.13202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lee MW, Ryu S, Kim DS, Lee JW, Sung KW, Koo HH, Yoo KH. Mesenchymal stem cells in suppression or progression of hematologic malignancy: current status and challenges. Leukemia. 2019;33:597–611. https://doi.org/10.1038/s41375-018-0373-9.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Iwasa M, Miura Y, Fujishiro A, Fujii S, Sugino N, Yoshioka S, et al. Bortezomib interferes with adhesion of B cell precursor acute lymphoblastic leukemia cells through SPARC up-regulation in human bone marrow mesenchymal stromal/stem cells. Int J Hematol. 2017;105:587–97. https://doi.org/10.1007/s12185-016-2169-x.

    Article  CAS  PubMed  Google Scholar 

  47. Yoshioka S, Miura Y, Yao H, Satake S, Hayashi Y, Tamura A, et al. CCAAT/enhancer-binding protein β expressed by bone marrow mesenchymal stromal cells regulates early B-cell lymphopoiesis. Stem Cells. 2014;32:730–40. https://doi.org/10.1002/stem.1555.

    Article  CAS  PubMed  Google Scholar 

  48. Aanei CM, Eloae FZ, Flandrin-Gresta P, Tavernier E, Carasevici E, Guyotat D, et al. Focal adhesion protein abnormalities in myelodysplastic mesenchymal stromal cells. Exp Cell Res. 2011;317:2616–29. https://doi.org/10.1016/j.yexcr.2011.08.007.

    Article  CAS  PubMed  Google Scholar 

  49. Roversi FM, Lopes MR, Machado-Neto JA, Longhini AL, Duarte Ada S, Baratti MO, et al. Serine protease inhibitor kunitz-type 2 is downregulated in myelodysplastic syndromes and modulates cell-cell adhesion. Stem Cells Dev. 2014;23:1109–20. https://doi.org/10.1089/scd.2013.0441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wu Y, Aanei CM, Kesr S, Picot T, Guyotat D, Campos Catafal L. Impaired expression of focal adhesion kinase in mesenchymal stromal cells from low-risk myelodysplastic syndrome patients. Front Oncol. 2017;7:164. https://doi.org/10.3389/fonc.2017.00164.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Corradi G, Baldazzi C, Očadlíková D, Marconi G, Parisi S, Testoni N, et al. Mesenchymal stromal cells from myelodysplastic and acute myeloid leukemia patients display in vitro reduced proliferative potential and similar capacity to support leukemia cell survival. Stem Cell Res Ther. 2018;9:271. https://doi.org/10.1186/s13287-018-1013-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Matthes TW, Meyer G, Samii K, Beris P. Increased apoptosis in acquired sideroblastic anaemia. Br J Haematol. 2000;111:843–52.

    CAS  PubMed  Google Scholar 

  53. Zhao ZG, Xu W, Yu HP, Fang BL, Wu SH, Li F, et al. Functional characteristics of mesenchymal stem cells derived from bone marrow of patients with myelodysplastic syndromes. Cancer Lett. 2012;317:136–43. https://doi.org/10.1016/j.canlet.2011.08.030.

    Article  CAS  PubMed  Google Scholar 

  54. Geyh S, Oz S, Cadeddu RP, Fröbel J, Brückner B, Kündgen A, et al. Insufficient stromal support in MDS results from molecular and functional deficits of mesenchymal stromal cells. Leukemia. 2013;27:1841–51. https://doi.org/10.1038/leu.2013.193.

    Article  CAS  PubMed  Google Scholar 

  55. Verma D, Kumar R, Pereira RS, Karantanou C, Zanetti C, Minciacchi VR, et al. Vitamin K antagonism impairs the bone marrow microenvironment and hematopoiesis. Blood. 2019;134:227–38. https://doi.org/10.1182/blood.2018874214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Ms. Yoko Nakagawa (Kyoto University) for her excellent technical assistance.

Funding

This work was supported in part by Grants-in-Aid from the Ministry of Education, Culture, Sports, Science, and Technology in Japan (#18K08323 to Y.M., #19K17856 to S.F.), by a Japanese Society of Hematology Research Grant (to Y.M. and S.F.), and by the Takeda Science Foundation (S.F.).

Author information

Authors and Affiliations

Authors

Contributions

Conception and design of the study: AF, MI, SF, TM, AA, KT, AT-K, and YM. Acquisition of data: AF, MI, SF, and YM. Analysis and interpretation of data: AF, MI, SF, TM, AA, KT, AT-K, and YM. Drafting of the article: AF, MI, SF, TM, AA, KT, AT-K, and YM. All authors have approved the final article.

Corresponding author

Correspondence to Aya Fujishiro.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Ethics

All materials were obtained from commercially available sources.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 57 kb)

Supplementary material 2 (PPTX 118 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fujishiro, A., Iwasa, M., Fujii, S. et al. Menatetrenone facilitates hematopoietic cell generation in a manner that is dependent on human bone marrow mesenchymal stromal/stem cells. Int J Hematol 112, 316–330 (2020). https://doi.org/10.1007/s12185-020-02916-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-020-02916-8

Keywords

Navigation