Log in

Analytical Methods for Virus Detection in Water and Food

  • Published:
Food Analytical Methods Aims and scope Submit manuscript

Abstract

Potential ways to address the issues that relate to the techniques for analyzing food and environmental samples for the presence of enteric viruses are discussed. It is not the authors’ remit to produce or recommend standard or reference methods but to address specific issues in the analytical procedures. Foods of primary importance are bivalve molluscs, particularly, oysters, clams, and mussels; salad crops such as lettuce, green onions and other greens; and soft fruits such as raspberries and strawberries. All types of water, not only drinking water but also recreational water (fresh, marine, and swimming pool), river water (irrigation water), raw and treated sewage are potential vehicles for virus transmission. Well over 100 different enteric viruses could be food or water contaminants; however, with few exceptions, most well-characterized foodborne or waterborne viral outbreaks are restricted to hepatitis A virus (HAV) and calicivirus, essentially norovirus (NoV). Target viruses for analytical methods include, in addition to NoV and HAV, hepatitis E virus (HEV), enteroviruses (e.g., poliovirus), adenovirus, rotavirus, astrovirus, and any other relevant virus likely to be transmitted by food or water. A survey of the currently available methods for detection of viruses in food and environmental matrices was conducted, gathering information on protocols for extraction of viruses from various matrices and on the various specific detection techniques for each virus type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexandersen S, Zhang Z, Reid SM, Hutchings GH, Donaldson AI (2002) J Gen Virol 83:1915

    CAS  Google Scholar 

  • Al-Soud WA, Radstrom P (2001) J Clin Microbiol 39:485

    CAS  Google Scholar 

  • American Public Health Association, American Water Works Association, Water Environment Federation (2005) In: Eaton AD et al (eds) Standard methods for the examination of water and wastewater, 21st edn. United Book Press, Baltimore, p 9

    Google Scholar 

  • Arnal C, Crance JM, Gantzer C, Schwartzbrod L, Deloince R, Billaudel S (1998) Zentralbl Hyg Umweltmed 201:279

    CAS  Google Scholar 

  • Atmar RL, Neill FH, Romalde JL et al (1995) Appl Environ Microbiol 61:3014

    CAS  Google Scholar 

  • Backer H (2002) Clin Infect Dis 34:355

    Google Scholar 

  • Baert L, Wobus CE, Van CE, Thackray LB, Debevere J, Uyttendaele M (2008a) Appl Environ Microbiol 74:543

    CAS  Google Scholar 

  • Baert L, Uyttendaele M, Vermeersch M, Van CE, Debevere J (2008b) J Food Prot 71:1590

    Google Scholar 

  • Bidawid S, Farber JM, Sattar SA (2000) J Virol Methods 88:175

    CAS  Google Scholar 

  • Boom R, Sol CJ, Salimans MM, Jansen CL, Wertheim-van Dillen PM, van der Noordaa J (1990) J Clin Microbiol 28:495

    CAS  Google Scholar 

  • Booth TF, Kournikakis B, Bastien N et al (2005) J Infect Dis 191:1472

    Google Scholar 

  • Branovic K, Forcic D, Ivancic J et al (2003) J Virol Methods 110:163

    CAS  Google Scholar 

  • Burgener M, Candrian U, Gilgen M (2003) J Virol Methods 108:165

    CAS  Google Scholar 

  • Burkhardt W III, Calci KR (2000) Appl Environ Microbiol 66:1375

    CAS  Google Scholar 

  • Burton NC, Grinshpun SA, Reponen T (2007) Ann Occup Hyg 51:143

    CAS  Google Scholar 

  • Butot S, Putallaz T, Sanchez G (2007) Appl Environ Microbiol 73:186

    CAS  Google Scholar 

  • Butot S, Putallaz T, Sanchez G (2008) Int J Food Microbiol 126:30

    CAS  Google Scholar 

  • Butot S, Putallaz T, Amoroso R, Sanchez G (2009) Appl Environ Microbiol 75:4155

    CAS  Google Scholar 

  • Calder L, Simmons G, Thornley C et al (2003) Epidemiol Infect 131:745

    CAS  Google Scholar 

  • Cannon RO, Poliner JR, Hirschhorn RB et al (1991) J Infect Dis 164:860

    CAS  Google Scholar 

  • Cannon JL, Papafragkou E, Park GW, Osborne J, Jaykus LA, Vinje J (2006) J Food Prot 69:2761

    Google Scholar 

  • Carducci A, Verani M, Casini B et al (2002) Lett Appl Microbiol 34:189

    Google Scholar 

  • Carter MJ (2005) J Appl Microbiol 98:1354

    CAS  Google Scholar 

  • Casas N, Amarita F, Martínez de Marañon I (2007) Int J Food Microbiol 120:179

    CAS  Google Scholar 

  • Chancellor DD, Tyagi S, Bazaco MC et al (2006) J Food Prot 69:1468

    Google Scholar 

  • Costafreda MI, Bosch A, Pintó RM (2006) Appl Environ Microbiol 72:3846

    CAS  Google Scholar 

  • Cotterelle B, Drougard C, Rolland J, Becamel M, Boudon M, Pinede S, Traoré O, Balay K, Pothier P, Espié E (2005) Outbreak of norovirus infection associated with the consumption of frozen raspberries, France, March 2005. Euro Surveill 10(17):2690

    Google Scholar 

  • Croci L, Dubois E, Cook N et al (2008) Food Anal Methods 1:73

    Google Scholar 

  • Di Girolamo R, Liston J, Matches J (1977) Appl Environ Microbiol 33:19

    Google Scholar 

  • Divizia M, Santi AL, Pana A (1989a) J Virol Methods 23:55

    CAS  Google Scholar 

  • Divizia M, De Filippis P, Di Napoli A, Venuti A, Perez-Bercof R, Pana A (1989b) Water Res 23:1155

    Google Scholar 

  • Dubois E, Hennechart C, Merle G et al (2007) Int J Food Microbiol 117:141

    CAS  Google Scholar 

  • EPA, (U.S. Environmental Protection Agency, Cincinnati, 1984), Chap. Publication no. EPA/600/4-84-013

  • Falkenhorst G, Krusell L, Lisby M, Madsen SB, Böttiger BE, Mølbak K (2005) Imported frozen raspberries cause a series of norovirus outbreaks in Denmark, 2005. Euro Surveill 10(38):2795

    Google Scholar 

  • Fell G, Boyens M, Baumgarte S (2007) Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 50:230

    Google Scholar 

  • Fukuda S, Sasaki Y, Seno M (2008) Appl Environ Microbiol 74:3912

    CAS  Google Scholar 

  • Gajardo R, Diez JM, Jofre J, Bosch A (1991) J Virol Methods 31:345

    CAS  Google Scholar 

  • Garin D, Fuchs F, Crance JM et al (1994) Epidemiol Infect 113:541

    CAS  Google Scholar 

  • Gassilloud B, Schwartzbrod L, Gantzer C (2003) Appl Environ Microbiol 69:3965

    CAS  Google Scholar 

  • Gaulin CD, Ramsay D, Cardinal P, D’Halevyn MA (1999) Can J Public Health 90:37

    CAS  Google Scholar 

  • Gerba CP (1987) In: Berg G (ed) Methods for recovering viruses from the environment. CRC Press, Boca Raton, p 1

    Google Scholar 

  • Gilgen M, Germann D, Lüthy J, Hübner P (1997) Int J Food Microbiol 37:189

    CAS  Google Scholar 

  • Grabow WOK, Taylor MB, Wolfaardt M (1996) WRC Report No. 496/1/96

  • Gutierrez-Aguirre I, Banjac M, Steyer A et al (2009) J Chromatogr A 1216:2700

    CAS  Google Scholar 

  • Hedlund KO, Rubilar-Abreu E, Svensson L (2000) J Infect Dis 181:S275–S280

    Google Scholar 

  • Hermann JR, Hoff SJ, Yoon KJ, Burkhardt AC, Evans RB, Zimmerman JJ (2006) Appl Environ Microbiol 72:4811

    CAS  Google Scholar 

  • Hewitt J, Greening GE (2004) J Food Prot 67:1743

    Google Scholar 

  • Hjertqvist M, Johansson A, Svensson N, Abom PE, Magnusson C, Olsson M, Hedlund KO, Andersson Y (2006) Four outbreaks of norovirus gastroenteritis after consuming raspberries, Sweden, June-August 2006. Euro Surveill 11(36):3038

    Google Scholar 

  • Hogan CJ Jr, Kettleson EM, Lee MH, Ramaswami B, Angenent LT, Biswas P (2005) J Appl Microbiol 99:1422

    Google Scholar 

  • Hoorfar J, Cook N (2003) Methods Mol Biol 216:51

    CAS  Google Scholar 

  • Hoorfar J, Cook N, Malorny B et al (2003) J Clin Microbiol 41:5835

    Google Scholar 

  • Hoorfar J, Malorny B, Abdulmawjood A, Cook N, Wagner M, Fach P (2004) J Clin Microbiol 42:1863

    CAS  Google Scholar 

  • Houde A, Guevremont E, Poitras E et al (2007) J Virol Methods 140:80

    CAS  Google Scholar 

  • Hourfar MK, Schmidt M, Seifried E, Roth WK (2005) Vox Sang 89:71

    CAS  Google Scholar 

  • Hurst CJ, Reynolds KA (2002) In: Hurst CJ et al (eds) Manual of environmental microbiology, 2nd edn. ASM Press, Washington, p 244

    Google Scholar 

  • Hutin YJ, Pool V, Cramer EH et al (1999) N Engl J Med 340:595

    CAS  Google Scholar 

  • Johnston MV (2000) J Mass Spectrom 35:585

    CAS  Google Scholar 

  • Jothikumar N, Aparna K, Kamatchiammal S, Paulmurugan R, Saravanadevi S, Khanna P (1993) Appl Environ Microbiol 59:2558

    CAS  Google Scholar 

  • Jothikumar N, Lowther JA, Henshilwood K, Lees DN, Hill VR, Vinje J (2005) Appl Environ Microbiol 71:1870

    CAS  Google Scholar 

  • Knepp JH, Geahr MA, Forman MS, Valsamakis A (2003) J Clin Microbiol 41:3532

    CAS  Google Scholar 

  • Kobayashi S, Natori K, Takeda N, Sakae K (2004) Microbiol Immunol 48:201

    CAS  Google Scholar 

  • Kok T, Wati S, Bayly B, Devonshire-Gill D, Higgins G (2000) J Clin Virol 16:59

    CAS  Google Scholar 

  • Koopmans M, Duizer E (2004) Int J Food Microbiol 90:23

    Google Scholar 

  • Korsager B, Hede S, Bøggild H, Böttiger BE, Mølbak K (2005) Two outbreaks of norovirus infections associated with the consumption of imported frozen raspberries, Denmark, May-June 2005. Euro Surveill 10(25):2729

    Google Scholar 

  • Kovac K, Gutierrez-Aguirre I, Banjac M et al (2009) J Virol Methods 162:272

    CAS  Google Scholar 

  • Kramberger P, Petrovic N, Strancar A, Ravnikar M (2004) J Virol Methods 120:51

    CAS  Google Scholar 

  • Lamhoujeb S, Fliss I, Ngazoa SE, Jean J (2008) Appl Environ Microbiol 74:3349

    CAS  Google Scholar 

  • Lawson HW, Braun MM, Glass RI et al (1991) Lancet 337:1200

    CAS  Google Scholar 

  • Le Guyader FS, Neill FH, Dubois E et al (2003) Int J Food Microbiol 87:107

    Google Scholar 

  • Le Guyader FS, Mittelholzer C, Haugarreau L et al (2004) Int J Food Microbiol 97:179

    Google Scholar 

  • Le Guyader FS, Bon F, DeMedici D et al (2006a) J Clin Microbiol 44:3878

    Google Scholar 

  • Le Guyader F, Loisy F, Atmar RL et al (2006b) Emerg Infect Dis 12:931

    Google Scholar 

  • Le Guyader FS, Le Saux JC, Ambert-Balay K et al (2008) J Clin Microbiol 46:4011

    Google Scholar 

  • Le Guyader FS, Parnaudeau S, Schaeffer J et al (2009) Appl Environ Microbiol 75:618

    Google Scholar 

  • Lodder-Verschoor F, de Roda Husman AM, van den Berg HH, Stein A, van Pelt-Heerschap HM, van der Poel WH (2005) J Food Prot 68:1853

    CAS  Google Scholar 

  • Mattison K, Brassard J, Gagne MJ et al (2009) Int J Food Microbiol 132:73

    CAS  Google Scholar 

  • Maunula L, Miettinen IT, von Bonsdorff CH (2005) Emerg Infect Dis 11:1716

    Google Scholar 

  • Meinhardt PL (2006) J Water Health 4:27

    CAS  Google Scholar 

  • Menut C, Beril C, Schwartzbrod L (1993) Water Sci Technol 27:294

    Google Scholar 

  • Milne SA, Gallacher S, Cash P, Lees DN, Henshilwood K, Porter AJ (2007) J Food Prot 70:1475

    CAS  Google Scholar 

  • Moore BE, Sagik BP, Sorber CA (1979) Appl Environ Microbiol 38:688

    CAS  Google Scholar 

  • Murray CJ (2002) In: Hurst CJ et al (eds) Manual of environmental microbiology, 2nd edn. ASM, Washington, p 166

    Google Scholar 

  • Nasser A, Weinberg D, Dinoor N, Fattal B, Adin A (1995) Water Sci Technol 31:63

    CAS  Google Scholar 

  • Nishida T, Nishio O, Kato M et al (2007) Microbiol Immunol 51:177

    CAS  Google Scholar 

  • Niu MT, Polish LB, Robertson BH et al (1992) J Infect Dis 166:518

    CAS  Google Scholar 

  • Nuanualsuwan S, Cliver DO (2002) J Virol Methods 104:217

    CAS  Google Scholar 

  • Nuanualsuwan S, Cliver DO (2003) Appl Environ Microbiol 69:350

    CAS  Google Scholar 

  • Oron G, Goemanns M, Manor Y, Feyen J (1995) Water Res 29:1069

    CAS  Google Scholar 

  • Passagot J, Crance JM, Deloince R, Laveran H, Beytout D, Fontanges R (1985) Water Res 19:1167

    Google Scholar 

  • Perelle S, Cavellini L, Burger C et al (2009) J Virol Methods 157:80

    CAS  Google Scholar 

  • Pintó RM, Diez JM, Bosch A (1994) J Med Virol 44:310

    Google Scholar 

  • Pintó RM, Gajardo R, Abad FX, Bosch A (1995) Environ Sci Technol 29:2636

    Google Scholar 

  • Pintó RM, Costafreda MI, Bosch A (2009) Appl Environ Microbiol 75:7350

    Google Scholar 

  • Ponka A, Maunula L, von Bonsdorff C-H, Lyytikainen O (1999) Euro Surveill 4:66

    Google Scholar 

  • Pyankov OV, Agranovski IE, Pyankova O et al (2007) Environ Microbiol 9:992

    CAS  Google Scholar 

  • Ramsay CN, Upton PA (1989) Lancet 1:43

    CAS  Google Scholar 

  • Reid TM, Robinson HG (1987) Epidemiol Infect 98:109

    CAS  Google Scholar 

  • Reynolds KA, Gerba CP, Abbaszadegan M, Pepper LL (2001) Can J Microbiol 47:153

    CAS  Google Scholar 

  • Richards GP, Watson MA, Kingsley DH (2004) J Virol Methods 116:63

    CAS  Google Scholar 

  • Rodriguez RA, Pepper IL, Gerba CP (2009) Appl Environ Microbiol 75:297

    CAS  Google Scholar 

  • Rodriguez-Lazaro D, D’Agostino M, Pla M, Cook N (2004) J Clin Microbiol 42:5832

    CAS  Google Scholar 

  • Rodriguez-Lazaro D, Pla M, Scortti M, Monzo HJ, Vazquez-Boland JA (2005) Appl Environ Microbiol 71:9008

    CAS  Google Scholar 

  • Rodríguez-Lázaro D, Lombard B, Smith H et al (2007) Trends Food Sci Technol 18:306

    Google Scholar 

  • Rutjes SA, Italiaander R, van den Berg HH, Lodder WJ, Roda Husman AM (2005) Appl Environ Microbiol 71:3734

    CAS  Google Scholar 

  • Rutjes SA, Lodder-Verschoor F, van der Poel WH, van Duijnhoven YT, de Roda Husman AM (2006a) J Food Prot 69:1949

    Google Scholar 

  • Rutjes SA, van den Berg HH, Lodder WJ, Roda Husman AM (2006b) Appl Environ Microbiol 72:5349

    CAS  Google Scholar 

  • Rzezutka A, Alotaibi M, D’Agostino M, Cook N (2005) J Food Prot 68:1923

    CAS  Google Scholar 

  • Sanchez G, Bosch A, Pintó RM (2007) Lett Appl Microbiol 45:1

    CAS  Google Scholar 

  • Scherer K, Mäde D, Ellerbroek L, Schulenburg J, Johne R, Klein G (2009) Food Environ Virol 1:42

    Google Scholar 

  • Schwab KJ, De Leon R, Sobsey MD (1993) Water Sci Technol 27:211

    Google Scholar 

  • Schwab KJ, Neill FH, Le Guyader F, Estes MK, Atmar RL (2001) Appl Environ Microbiol 67:742

    CAS  Google Scholar 

  • Senouci S, Maul A, Schwartzbrod L (1996) Zentralbl Hyg Umweltmed 198:307

    CAS  Google Scholar 

  • Shan XC, Wolffs P, Griffiths MW (2005) Appl Environ Microbiol 71:5624

    CAS  Google Scholar 

  • Soule H, Genoulaz O, Gratacap-Cavallier B, Chevallier P, Liu JX, Seigneurin JM (2000) Water Res 34:1063

    CAS  Google Scholar 

  • Taylor MB, Cox N, Vrey MA, Grabow WOK (2001) Water Res 35:2653

    CAS  Google Scholar 

  • Tian P, Mandrell R (2006) J Appl Microbiol 100:564

    CAS  Google Scholar 

  • Top** JR, Schnerr H, Haines J et al (2009) J Virol Methods 156:89

    CAS  Google Scholar 

  • Urbanucci A, Myrmel M, Berg I, von Bonsdorff CH, Maunula L (2009) Int J Food Microbiol 135:175

    CAS  Google Scholar 

  • Van Heerden J, Ehlers MM, Van Zyl WB, Grabow WOK (2004) Water Sci Technol 50:39

    Google Scholar 

  • Van Heerden J, Ehlers MM, Heim A, Grabow WOK (2005) J Appl Microbiol 99:234

    Google Scholar 

  • van Zyl WB, Williams PJ, Grabow WOK, Taylor MB. (2004) Application of a molecular method for the detection of group A rotaviruses in raw and treated water. Water Sci Technol 50:223–228

    Google Scholar 

  • Van Zyl WB, Page NA, Grabow WOK, Steele AD, Taylor MB (2006) Appl Environ Microbiol 72:4554

    Google Scholar 

  • Venter JME. (2004) The incidence of hepatitis A virus in selected water sources and associated risk of infection in South Africa. [MSc dissertation]. Pretoria: University of Pretoria

  • Verreault D, Moineau S, Duchaine C (2008) Microbiol Mol Biol Rev 72:413

    CAS  Google Scholar 

  • Vilaginès P, Sarrette B, Husson G, Vilaginès R (1993) Water Sci Technol 27:306

    Google Scholar 

  • Vilaginès P, Sarrette B, Champsaur H et al (1997) Water Sci Technol 35:445

    Google Scholar 

  • Vivancos R, Shroufi A, Sillis M et al (2009) Int J Infect Dis 13:629

    Google Scholar 

  • Vivier JC, Ehlers MM, Grabow WOK (2001) Water Res 38:2699

    Google Scholar 

  • Vivier JC, Ehlers MM, Grabow WOK, Havelaar AH (2002) Water Supply 2:1

    Google Scholar 

  • Vivier JC, Ehlers MM, Grabow WOK (2004) Water Res 38:11

    Google Scholar 

  • Widdowson MA, Sulka A, Bulens SN et al (2005) Emerg Infect Dis 11:95

    Google Scholar 

  • Williams FP, Fout GS (1992) Environ Sci Technol 26:689

    Google Scholar 

  • Wyn-Jones P (2007) In: Bosch A (ed) Human viruses in water. Elsevier, Amsterdam, p 177

    Google Scholar 

Download references

Acknowledgments

This paper was produced in a cooperative action of the working group on analytical methods of the EU COST action 929 (Environet). G. Sánchez is the recipient of a JAE doctor grant from the “Consejo Superior de Investigaciones Científicas” (CSIC). Rembuluwani Netshikweta acknowledges a post-graduate bursary from the Poliomyelitis Research Foundation, South Africa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert Bosch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bosch, A., Sánchez, G., Abbaszadegan, M. et al. Analytical Methods for Virus Detection in Water and Food. Food Anal. Methods 4, 4–12 (2011). https://doi.org/10.1007/s12161-010-9161-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12161-010-9161-5

Keywords

Navigation