Log in

Short Ozonation of Lignocellulosic Waste as Energetically Favorable Pretreatment

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Lignocellulosic waste (here municipal trimmings) is a promising sustainable feedstock for ethanol production, but requires costly and polluting pretreatment, often resulting in toxic by-products. Ozonation, nonpolluting, effective pretreatment method, is not used commercially due to high energy requirements of ozone production at high ozone doses needed. Our results, however, demonstrated that low-dose ozonation (15 min, accumulated TOD = 318 mg L−1) of water-submerged waste resulted in improved enzymatic saccharification efficiency (31% of cellulose) compared to a non-ozonated sample (12%) although only 20% of the lignin was removed. Ozonation up to 90 min resulted in better conversion however exceptionally long ozonation (6 h and beyond) resulted in reduced conversion. These results suggest that contrary to common hypothesis, short ozonation could offer an effective and feasible pretreatment method for high sugar release without the need for delignification. In addition, the ozonation process was accompanied by changes in absorbance, mainly at 280 nm, making it a useful tool for process monitoring. Net calculated energy balance was positive for all ozonation regimes, with increased process efficiency at lower ozone doses. Furthermore, ozonation can be generated on-site and on demand, enabling decentralized pretreatment operated near the feed source, thus overcoming transportation costs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Saini JK, Saini R, Tewari L (2015) Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments. 3Biotech 5:337–353. https://doi.org/10.1007/s13205-014-0246-5

    Article  Google Scholar 

  2. Naik SN, Goud VV, Rout PK, Dalai AK (2010) Production of first and second generation biofuels: a comprehensive review. Renew Sust Energ Rev 14:578–597. https://doi.org/10.1016/j.rser.2009.10.003

    Article  CAS  Google Scholar 

  3. Ayalon O, Elimelech E, Spenser J, Zaban H, Lev-On M, Lev-On P (2008) Bioethanol in Israel: global context, research, planning and policy. Samuel Neaman Institute, Haifa, Israel

    Google Scholar 

  4. Gupta A, Verma JP (2015) Sustainable bio-ethanol production from agro-residues: a review. Renew Sust Energ Rev 41:550–567. https://doi.org/10.1016/j.rser.2014.08.032

    Article  CAS  Google Scholar 

  5. Mood SH, Golfeshan AH, Tabatabaei M, Jouzani GS, Najafi GH, Gholami M, Ardjmand M (2013) Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew Sust Energ Rev 27:77–93. https://doi.org/10.1016/j.rser.2013.06.033

    Article  CAS  Google Scholar 

  6. Menon V, Rao M (2012) Trends in bioconversion of lignocellulose: biofuels, platform chemicals & biorefinery concept. Prog Energy Combust Sci 38:522–550. https://doi.org/10.1016/j.pecs.2012.02.002

    Article  CAS  Google Scholar 

  7. Li X, Li M, Pu Y, Ragauskas AJ, Klett AS, Thies M, Zheng Y (2018) Inhibitory effects of lignin on enzymatic hydrolysis: the role of lignin chemistry and molecular weight. Renew Energy 123:664–674. https://doi.org/10.1016/j.renene.2018.02.079

    Article  CAS  Google Scholar 

  8. **menes E, Kim Y, Mosier N, Dien B, Ladisch M (2011) Deactivation of cellulases by phenols. Enzym Microb Technol 48:54–60. https://doi.org/10.1016/j.enzmictec.2010.09.006

    Article  CAS  Google Scholar 

  9. Yoshida M, Liu Y, Uchida S, Kawarada K, Ukagami Y, Ichinose H, Kaneko S, Fukuda K (2008) Effects of cellulose crystallinity, hemicellulose, and lignin on the enzymatic hydrolysis of Miscanthus sinensis to monosaccharides. Biosci Biotechnol Biochem 72(3):805–810

    Article  CAS  PubMed  Google Scholar 

  10. Abu Tayeh H, Levy-Shalev O, Azaizeh H, Dosoretz CG (2016) Subcritical hydrothermal pretreatment of olive mill solid waste for biofuel production. Bioresour Technol 199:164–172. https://doi.org/10.1016/j.biortech.2015.08.138

    Article  CAS  PubMed  Google Scholar 

  11. Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis. Bioresour Technol 101:4851–4861. https://doi.org/10.1016/j.biortech.2009.11.093

    Article  CAS  Google Scholar 

  12. Travaini R, Martín-Juárez J, Lorenzo-Hernando A, Bolado-Rodríguez S (2016) Ozonolysis. An advantageous pretreatment for lignocellulosic biomass revisited. Bioresour Technol 199:2–12. https://doi.org/10.1016/j.biortech.2015.08.143

    Article  CAS  PubMed  Google Scholar 

  13. Taherzadeh MJ, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci 9:1621–1651. https://doi.org/10.3390/ijms9091621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gnansounou E, Dauriat A (2010) Techno-economic analysis of lignocellulosic ethanol: a review. Bioresour Technol 101:4980–4991. https://doi.org/10.1016/j.biortech.2010.02.009

    Article  CAS  PubMed  Google Scholar 

  15. Greenhot Z (2015) Agriculture byproducts in Israel. Report. Ministry of Environmental Protection, Israel

  16. Balan V (2014) Current challenges in commercially producing biofuels from lignocellulosic biomass. ISRN Biotech 463074:1–31. https://doi.org/10.1155/2014/463074

    Article  CAS  Google Scholar 

  17. Hoigné J, Bader H (1983) Rate constants of reactions of ozone with organic and inorganic compounds in water—I: non-dissociating organic compounds. Water Res 17(2):173–183. https://doi.org/10.1016/0043-1354(83)90098-2

    Article  Google Scholar 

  18. Balat M (2011) Production of bioethanol from lignocellulosic materials via the biochemical pathway. Energy Convers Manag 52:858–875. https://doi.org/10.1016/j.enconman.2010.08.013

    Article  CAS  Google Scholar 

  19. Peretz R, Gerchman Y, Mamane H (2017) Ozonation of tannic acid to model biomass pretreatment for bioethanol production. Bioresour Technol 241:1060–1066. https://doi.org/10.1016/j.biortech.2017.05.204

    Article  CAS  PubMed  Google Scholar 

  20. Mvula E, von Sonntag C (2003) Ozonolysis of phenols in aqueous solution. Org Biomol Chem 1:1749–1756. https://doi.org/10.1039/B301824P

    Article  CAS  PubMed  Google Scholar 

  21. von Gunten U (2003) Ozonation of drinking water. Part I. Oxidation kinetics and product formation. Water Res 37:1443–1467. https://doi.org/10.1016/S0043-1354(02)00457-8

    Article  CAS  Google Scholar 

  22. Zucker I, Avisar D, Mamane H, Jekel M, Hübne U (2016) Determination of oxidant exposure during ozonation of secondary effluent to predict contaminant removal. Water Res 100:508–516. https://doi.org/10.1016/j.watres.2016.05.049

    Article  CAS  PubMed  Google Scholar 

  23. García-Cubero MT, González-Benito G, Indacoechea I, Coca M, Bolado S (2009) Effect of ozonolysis pretreatment on enzymatic digestibility of wheat and rye straw. Bioresour Technol 100:1608–1613. https://doi.org/10.1016/j.biortech.2008.09.012

    Article  CAS  PubMed  Google Scholar 

  24. Vidal PF, Molinier J (1988) Ozonolysis of lignin—improvement of in vitro digestibility of poplar sawdust. Biomass 16:1–17. https://doi.org/10.1016/0144-4565(88)90012-1

    Article  CAS  Google Scholar 

  25. Shi F, **ang H, Li Y (2015) Combined pretreatment using ozonolysis and ball milling to improve enzymatic saccharification of corn straw. Bioresour Technol 179:444–451. https://doi.org/10.1016/j.biortech.2014.12.063

    Article  CAS  PubMed  Google Scholar 

  26. Jönsson LJ, Alriksson B, Nilvebrant N (2013) Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol Biofuels 6(16):1–10. https://doi.org/10.1186/1754-6834-6-16

    Article  CAS  Google Scholar 

  27. Neely WC (1984) Factors affecting the pretreatment of biomass with gaseous ozone. Biotechnol Bioeng 26:59–65. https://doi.org/10.1002/bit.260260112

    Article  CAS  PubMed  Google Scholar 

  28. Ozonek J, Fijalkowski S, Polio I (1997) Exergy identification of energy utilization efficiency in an industrial process of ozone generation. Ozone Sci Engineer 19:201–226. https://doi.org/10.1080/01919519708547302

    Article  CAS  Google Scholar 

  29. Sugimoto T, Magara K, Hosoya S, Oosawa S, Shimoda T, Nishibori K (2009) Ozone pretreatment of lignocellulosic materials for ethanol production: improvement of enzymatic susceptibility of softwood. Holzforschung 63:537–543. https://doi.org/10.1515/HF.2009.091

    Article  CAS  Google Scholar 

  30. Mulakhudair AR, Hanotu J, Zimmerman W (2017) Exploiting ozonolysis-microbe synergy for biomass processing: application in lignocellulosic biomass pretreatment. Biomass Bioenergy 105:147–154. https://doi.org/10.1016/j.biombioe.2017.06.018

    Article  CAS  Google Scholar 

  31. Buffle MO, Schumacher J, Meylan S, Jekel M, von Gunten U (2006) Ozonation and advanced oxidation of wastewater: effect of O3 dose, pH, DOM and HO• scavengers on ozone decomposition and HO• generation. Ozone Sci Engineer 28:247–259. https://doi.org/10.1080/01919510600718825

    Article  CAS  Google Scholar 

  32. Spectranomics Protocol (2011) Total phenol and tannin determination. Carnegie Institution for Science, Stanford, CA

    Google Scholar 

  33. Foster CE, Martin TM, Pauly M (2010) Comprehensive compositional analysis of plant cell walls (lignocellulosic biomass) part I: lignin. J Vis Exp 37:e1745. https://doi.org/10.3791/1745

    Article  CAS  Google Scholar 

  34. Carrier M, Loppinet-Serani A, Denux D, Lasnier JM, Ham-Pichavant F, Cansell F, Aymonier C (2011) Thermogravimetric analysis as a new method to determine the lignocellulosic composition of biomass. Biomass Bioenergy 35:298–307. https://doi.org/10.1016/j.biombioe.2010.08.067

    Article  CAS  Google Scholar 

  35. Coward-Kelly G, Aiello-Mazzari C, Kim S, Granda C, Holtzapple M (2003) Suggested improvements to the standard filter paper assay used to measure cellulase activity. Biotechnol Bioeng 82(6):745–749. https://doi.org/10.1002/bit.10620

    Article  CAS  PubMed  Google Scholar 

  36. Feeny PP (1968) Seasonal changes in the tannin content of oak leaves. Phytochemistry 7(5):871–880. https://doi.org/10.1016/S0031-9422(00)84845-1

    Article  CAS  Google Scholar 

  37. Kukkola EM, Koutaniemi S, Pöllänen E, Gustafsson M, Karhunen P, Lundell TK, Saranpää P, Kilpeläinen I, Teeri TH, Fagerstedt KV (2004) The dibenzodioxocin lignin substructure is abundant in the inner part of the secondary wall in Norway spruce and silver birch xylem. Planta 218(3):497–500

    Article  CAS  PubMed  Google Scholar 

  38. Abdul-Latif MH (2013) Qualitative and quantitative determination of lignin in different types of Iraqi Phoenix dactylifera Date palm pruning woods. J Nat Sci Res 3(6):71–77

    Google Scholar 

  39. Saroj DP, Kumar A, Bose P, Tare V, Dhopavkar Y (2005) Mineralization of some natural refractory organic compounds by biodegradation and ozonation. Water Res 39:1921–1933. https://doi.org/10.1002/jctb.1365

    Article  CAS  PubMed  Google Scholar 

  40. Christensen JM, Rusch KA, Malone RE (2000) Development of a model for describing accumulation of color and subsequent destruction by ozone in a freshwater recirculating aquaculture system. J World Aquacult Soc 31(2):167–174. https://doi.org/10.1111/j.1749-7345.2000.tb00350.x

    Article  Google Scholar 

  41. Brolin A, Gierer J, Zhang Y (1993) On the selectivity of ozone delignification of softwood kraft pulps. Wood Sci Technol 27:115–129

    Article  CAS  Google Scholar 

  42. Elovitz MS, von Gunten U, Kaiser HP (2000) Hydroxyl radical/ozone ratios during ozonation processes. II. The effect of temperature, pH, alkalinity, and DOM properties. Ozone Sci Engineer 22:123–150. https://doi.org/10.1080/01919510008547216

    Article  CAS  Google Scholar 

  43. Lee JM, Jameel H, Venditti RA (2010) Effect of ozone and autohydrolysis pretreatments on enzymatic digestibility of coastal Bermuda grass. BioResources 5(2):1084–1101

    CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Alex Golberg, Tel Aviv University, for his enormous help in the HPIC data analysis and for his advice. We also wish to thank Du-Pont Company for their donation of enzymes.

Funding

This research was conducted in the framework of the Israeli Ministry of National Infrastructure, Energy and Water Resources grant number 214-11-006, the Israeli Ministry of Environmental Protection grant number 132-3-4, and a scholarship from the Israeli Ministry of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoram Gerchman.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 1033 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosen, Y., Mamane, H. & Gerchman, Y. Short Ozonation of Lignocellulosic Waste as Energetically Favorable Pretreatment. Bioenerg. Res. 12, 292–301 (2019). https://doi.org/10.1007/s12155-019-9962-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-019-9962-3

Keywords

Navigation